We previously demonstrated that 17beta hydroxysteroid dehydrogenase type 2, the enzyme that inactivates estradiol to estrone, is expressed in luteal eutopic endometrium in response to progesterone but not in simultaneously biopsied peritoneal endometriotic tissue. This molecular evidence of progesterone resistance, together with the clinical observation of resistance of endometriosis to treatment with progestins, led us to determine the levels of progesterone receptor (PR) isoforms PR-A and PR-B in eutopic endometrial and extra-ovarian endometriotic tissues. It was proposed that progesterone action on target genes is mediated primarily by homodimers of PR-B, whereas the truncated variant PR-A acts as a repressor of PR-B function. Immunoprecipitation, followed by Western blot analysis, was performed to detect bands specific for PR-A and PR-B in paired samples of endometriotic and eutopic endometrial tissues simultaneously biopsed from 18 women undergoing laparoscopy during various phases of the menstrual cycle. PR-B was present in 17 of 18 eutopic endometrial samples, and its level increased in the preovulatory phase, as expected, whereas PR-A was detected in all samples (n = 18) with a similar, but less prominent, cyclic variation in its levels. In endometriotic samples, however, no detectable PR-B could be demonstrated, whereas PR-A was detected in all samples (n = 18), albeit in much lower levels and without any cyclic variation in contrast with the eutopic endometrium. Levels of PR-A and PR-B in endometriotic and eutopic endometrial tissues were determined and compared after normalization to total protein and estrogen receptor-alpha levels. Using RNase protection assay, we also demonstrated indirectly that only PR-A transcripts were present in endometriotic tissue samples (n = 8), whereas both PR-A and PR-B transcripts were readily detectable in all eutopic endometrial samples (n = 8). This was indicative that failure to detect PR-B protein in endometriotic tissues is due to the absence of PR-B transcripts. We conclude that progesterone resistance in endometriotic tissue from laboratory and clinical observations may be accounted for by the presence of the inhibitory PR isoform PR-A and the absence of the stimulatory isoform PR-B.
Aberrant aromatase expression in stromal cells of endometriosis gives rise to conversion of circulating androstenedione to estrone in this tissue, whereas aromatase expression is absent in the eutopic endometrium. In this study, we initially demonstrated by Northern blotting transcripts of the reductive 17beta-hydroxysteroid dehydrogenase (17betaHSD) type 1, which catalyzes the conversion of estrone to 17beta-estradiol, in both eutopic endometrium and endometriosis. Thus, it follows that the product of the aromatase reaction, namely estrone, that is weakly estrogenic can be converted to the potent estrogen, 17beta-estradiol, in endometriotic tissues. It was previously demonstrated that progesterone stimulates the inactivation of 17beta-estradiol through conversion to estrone in eutopic endometrial epithelial cells. Subsequently, 17betaHSD type 2 was shown to catalyze this reaction, and its transcripts were detected in the epithelial cell component of the eutopic endometrium in secretory phase. Because 17beta-estradiol plays a critical role in the development and growth of endometriosis, we studied 17betaHSD-2 expression in endometriotic tissues and eutopic endometrium. We demonstrated, by Northern blotting, 17betaHSD-2 messenger ribonucleic acid (RNA) in all RNA samples of secretory eutopic endometrium (n=12) but not in secretory samples of endometriotic lesions (n=10), including paired samples of endometrium and endometriosis obtained simultaneously from eight patients. This messenger RNA was not detectable in any samples of proliferative eutopic endometrium or endometriosis (n=4) as expected. Next, we confirmed these findings by demonstration of immunoreactive 17betaHSD-2 in epithelial cells of secretory eutopic endometrium in 11 of 13 samples employing a monoclonal antibody against 17betaHSD-2, whereas 17betaHSD-2 was absent in paired secretory endometriotic tissues (n=4). Proliferative eutopic endometrial (n=8) and endometriotic (n=4) tissues were both negative for immunoreactive 17betaHSD-2, except for barely detectable levels in 1 eutopic endometrial sample. Finally, we sought to determine whether deficient 17betaHSD-2 expression in endometriotic tissues is due to impaired progesterone action in endometriosis. We determined by immunohistochemistry the expression of progesterone and estrogen receptors in these paired samples of secretory (n=4) and proliferative (n=4) eutopic endometrium and endometriosis, and no differences could be demonstrated. In conclusion, inactivation of 17beta-estradiol is impaired in endometriotic tissues due to deficient expression of 17betaHSD-2, which is normally expressed in eutopic endometrium in response to progesterone. The lack of 17betaHSD-2 expression in endometriosis is not due to alterations in the levels of immunoreactive progesterone or estrogen receptors in this tissue and may be related to an inhibitory aberration in the signaling pathway that regulates 17betaHSD-2 expression.
In stromal cells of endometriosis, marked levels of aromatase P450 (P450arom) mRNA and activity are present and can be vigorously stimulated by (Bu)2cAMP or PGE2 to give rise to physiologically significant estrogen biosynthesis. Since eutopic endometrial tissue or stromal cells lack P450arom expression, we studied the molecular basis for differential P450arom expression in endometriosis and eutopic endometrium. First, we demonstrated by rapid amplification of cDNA 5'-ends that P450arom expression in pelvic endometriotic lesions is regulated almost exclusively via the alternative promoter II. Then, luciferase reporter plasmids containing deletion mutations of the 5'-flanking region of promoter II were transfected into endometriotic stromal cells. We identified two critical regulatory regions for cAMP induction of promoter II activity: 1) a-214/-100 bp proximal region responsible for a 3.7-fold induction, and 2) a -517/ -214 distal region responsible for potentiation of cAMP response up to 13-fold. In the -214/-100 region, we studied eutopic endometrial and endometriotic nuclear protein binding to a nuclear receptor half-site (NRHS, AGGTCA) and an imperfect cAMP response element (TGCACGTCA). Using electrophoretic mobility shift assay, cAMP response element-binding activity in nuclear proteins from both endometriotic and eutopic endometrial cells gave rise to formation of identical DNA-protein complexes. The NRHS probe, on the other hand, formed a distinct complex with nuclear proteins from endometriotic cells, which migrated at a much faster rate compared with the complex formed with nuclear proteins from eutopic endometrial cells. Employing recombinant proteins and antibodies against steroidogenic factor-1 (SF-1) and chicken ovalbumin upstream promoter transcription factor (COUP-TF), we demonstrated that COUP-TF but not SF-1 bound to NRHS in eutopic endometrial cells, whereas SF-1 was the primary NRHS-binding protein in endometriotic cells. In fact, COUP-TF transcripts were present in both eutopic endometrial (n = 12) and endometriotic tissues (n = 8), whereas SF-1 transcripts were detected in all endometriotic tissues (n = 12), but in only 3 of 15 eutopic endometrial tissues. Moreover, we demonstrated a dose-dependent direct competition between SF-1 and COUP-TF for occupancy of the NRHS, to which SF-1 bound with a higher affinity. Finally, overexpression of SF-1 in eutopic endometrial and endometriotic cells strikingly potentiated baseline and cAMP-induced activities of -517 promoter II construct, whereas overexpression of COUP-TF almost completely abolished these activities. In conclusion, COUP-TF might be one of the factors responsible for the inhibition of P450arom expression in eutopic endometrial stromal cells, which lack SF-1 expression in the majority (80%) of the samples; in contrast, aberrant SF-1 expression in endometriotic stromal cells can override this inhibition by competing for the same DNA-binding site, which is likely to account for high levels of baseline and cAMP-induced aromatase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.