Major AEP components can be recorded to short gaps at 1 Hz using high sampling rates and wide-band filters. At higher rates, only ABR and MLRs can be recorded. Such simultaneous recordings may provide a complete assessment of temporal resolution and processing at different levels of auditory pathways.
Artificial intelligence (AI) is one of the most promising approaches to health innovation. The use of AI in image recognition considerably extends findings beyond the constraints of human sight. The application of AI in medical imaging, which relies on picture interpretation, is beneficial for automatic diagnosis. Diagnostic radiology is evolving from a subjective perceptual talent to a more objective science thanks to AI. Automatic object detection in medical images is an essential AI technology in medicine. The problem of detecting brain tumors at an early stage is well advanced with convolutional neural network (CNN) and deep learning algorithms (DLA). The problem is that those algorithms require a training phase with a big database of more than 500 images and time-consuming with a complex computational and expensive infrastructure. This study proposes a classical automatic segmentation method for detecting brain tumors in the early stage using MRI images. It is based on a multilevel thresholding technique on a harmony search algorithm (HSO); the algorithm was developed to suit MRI brain segmentation, and parameters selection was optimized for the purpose. Multiple thresholds, based on the variance and entropy functions, break the histogram into multiple portions, and different colors are associated with each portion. To eliminate the tiny arias supposed as noise and detect brain tumors, morphological operations followed by a connected component analysis are utilized after segmentation. The brain tumor detection performance is judged using performance parameters such as Accuracy, Dice Coefficient, and Jaccard index. The results are compared to those acquired manually by experts in the field. The results were further compared with different CNN and DLA approaches using Brain Images dataset called the “BraTS 2017 challenge”. The average Dice Index was used as a performance measure for the comparison. The results of the proposed approach were found to be competitive in accuracy to those obtained by CNN and DLA methods and much better in terms of execution time, computational complexity, and data management.
Bedsores, also known as pressure ulcers, are wounds caused by the applied external force (pressure) on body segments, thereby preventing blood supply from delivering the required elements to the skin tissue. Missing elements hinder the skin’s ability to maintain its health. It poses a significant threat to patients that have limited mobility. A new patented mattress design and alternative suggested designs aimed to reduce pressure are investigated in this paper for their performance in decreasing pressure. A simulation using Ansys finite element analysis (FEA) is carried out for comparison. Three-dimensional models are designed and tested in the simulation for a mattress and human anthropometric segments (Torso and Hip). All designs are carried out in solidworks. Results show that the original design can redistribute the pressure and decrease it up to 17% less than the normal mattress. The original design shows better ability to decrease the absolute amount of pressure on the body. However, increasing the surface area of the movable parts results in less pressure applied to the body parts. Thus, this work suggests changing the surface area of the cubes from 25 to 100 cm2.
Breast cancer ranks among the leading causes of death for women globally, making it imperative to swiftly and precisely detect the condition to ensure timely treatment and enhanced chances of recovery. This study focuses on transfer learning with 3D U-Net models to classify ductal carcinoma, the most frequent subtype of breast cancer, in histopathology imaging. In this research work, a dataset of 162 microscopic images of breast cancer specimens is utilized for breast histopathology analysis. Preprocessing the original image data includes shrinking the images, standardizing the intensities, and extracting patches of size 50 × 50 pixels. The retrieved patches were employed to construct a basic 3D U-Net model and a refined 3D U-Net model that had been previously trained on an extensive medical image segmentation dataset. The findings revealed that the fine-tuned 3D U-Net model (97%) outperformed the simple 3D U-Net model (87%) in identifying ductal cancer in breast histopathology imaging. The fine-tuned model exhibited a smaller loss (0.003) on the testing data (0.041) in comparison to the simple model. The disparity in the training and testing accuracy reveals that the fine-tuned model may have overfitted to the training data indicating that there is room for improvement. To progress in computer-aided diagnosis, the research study also adopted various data augmentation methodologies. The experimental approach that was put forward achieved state-of-the-art performance, surpassing the benchmark techniques used in previous studies in the same field, and exhibiting greater accuracy. The presented scheme has promising potential for better cancer detection and diagnosis in practical applications of mammography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.