Changing the direction of locomotion involves lateral translation of the body in addition to body reorientation to align with the new travel direction. We designed this study to investigate the CNS control of these postural adjustments. The specific aims of the study were: first, to test the hypothesis that anticipatory head movements towards the new travel path are proactively controlled by the CNS to provide a stable frame of reference for body reorientation and, second, to investigate the relative contribution of foot placement and other mechanisms to the control of lateral body translation during steering. We achieved these aims by carrying out a comprehensive biomechanical analysis of participants performing a steering paradigm and observing the effects of immobilizing the head (by fixing it to the trunk) on postural control and the sequencing of body segment reorientation. Participants performed a task whereby they were visually cued to change their direction of walking by 30 degrees or 60 degrees, left or right, at the midpoint of a 9-m path. The temporal sequence of body reorientation was consistent with previous findings that the head starts to turn in the direction of travel before the rest of the body. Translation of the centre of mass (COM) in the new travel direction was achieved both through alternate placement of the contralateral foot prior to the turn step and use of a hip strategy to control the body pendulum during swing. Immobilizing the head resulted in the following significant changes: earlier onset of trunk yaw with respect to cue delivery, later trunk roll onset and a reduction in trunk roll amplitude. These results provide valuable information regarding the biomechanics of steering and support the hypothesis that aligning the head with motor or locomotor goals using vision provides the CNS with a stable frame of reference, independent of gaze, that can be used to control the repositioning of the body in space.
This study investigated the contribution of ankle muscle proprioception to the control of dynamic stability and lower limb kinematics during adaptive locomotion, by using mechanical vibration to alter the muscle spindle output of individuals' stance limbs. It was hypothesised that muscle length information from the ankle of the stance limb provides information describing location as well as acceleration of the centre of mass (COM) with respect to the support foot during the swing phase of locomotion. Our prediction, based on this hypothesis was that ankle muscle vibration would cause changes to the position and acceleration of the COM and/or compensatory postural responses. Vibrators were attached to both the stance limb ankle plantarflexors (at the Achilles tendon) and the opposing dorsiflexor muscle group (over tibialis anterior). Participants were required to walk along a 9-m travel path and step over any obstacles placed in their way. There were three task conditions: (1) an obstacle (15 cm in height) was positioned at the midpoint of the walkway prior to the start of the trial, (2) the same obstacle was triggered to appear unexpectedly one step in front of the participant at the walkway midpoint and (3) the subjects' walking path remained clear. The participants' starting position was manipulated so that the first step over the obstacle (when present) was always performed with their right leg. For each obstacle condition participants experienced the following vibration conditions: no vibration, vibration of the left leg calf muscles or vibration of the anterior compartment muscles of the lower left leg. Vibration began one step before the obstacle at left leg heel contact and continued for 1 s. Vibrating the ankle muscles of the stance limb during the step over an obstacle resulted in significant changes to COM behaviour [measured as displacement, acceleration and position with respect to the centre of pressure (COP)] in both the medial/lateral (M/L) and anterior/posterior planes. There were also significant task-specific changes in stepping behaviour associated with COM control (measured as peak M/L acceleration, M/L foot displacement and COP position under the stance foot during the step over the obstacle). The results provide strong evidence that the primary endings of ankle muscle spindles play a significant role in the control of posture and balance during the swing phase of locomotion by providing information describing the movement of the body's COM with respect to the support foot. Our results also provide supporting evidence for the proposal that there are context-dependent changes in muscle spindle sensitivity during human locomotion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.