This paper describes a method for limiting vibration in flexible systems by shaping the input to the system. Unlike most previous input shaping strategies, this method does not require a precise system model or lengthy numerical computation; only estimates of the system natural frequency and damping ratio are required. The effectiveness of this method when there are errors in the system model is explored and quantified. Next, an algorithm is presented, which, given an upper bound on acceptable residual vibration amplitude, determines a shaping strategy that is insensitive to errors in the estimate of the natural frequency. Finally, performance predictions are compared to hardware experiments.
Input shaping reduces residual vibration in computer controlled machines by convolving a sequence of impulses with a desired system command. The resulting shaped input is then used to drive the system. The impulse sequence has traditionally contained only positively valued impulses. However, when the impulses are allowed to have negative amplitudes, the rise time can be improved. Unfortunately, excitation of unmodeled high modes and overcurrenting of the actuators may accompany the improved rise time. Solutions to the problem of high-mode excitation and overcurrenting are presented. Furthermore, a simple look-up method is presented that facilitates the design of negative input shapers. The performance of negative shapers is evaluated experimentally on two systems; one driven by a piezo actuator and the other equipped with DC motors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.