BackgroundIn northern Tunisia, the co-circulation of two related sand fly-borne phleboviruses, Toscana virus (TOSV) and Punique virus (PUNV) was previously demonstrated. In contrast to TOSV, a prominent human pathogen, there is no data supporting that PUNV is capable to infect and cause disease to humans. We studied the respective involvement of TOSV and PUNV in human infections in northern Tunisia through a seroprevalence study.MethodsThe presence of TOSV and PUNV neutralising antibodies (NT-Ab) was tested in human sera collected from 5 districts of the governorate of Bizerte, and the titres of NT-Ab were estimated by microneutralisation (MN) assay.Principal FindingsA total of 1,273 sera were processed. TOSV and PUNV NT-Ab were detected in 522 (41%) and 111 sera (8.72%) respectively. TOSV seroprevalence varied from 17.2% to 59.4% depending on the district. Analysis of TOSV geometric mean titre values demonstrated a constant increase according to the age. The vast majority of sera containing NT-Ab were found to be more reactive toward TOSV than PUNV. Indeed, past infections with PUNV and TOSV were undisputable for 5 and 414 sera, respectively.ConclusionsPUNV may be capable to infect humans but at a low rate. TOSV is responsible for the vast majority of human infections by sand fly-borne phleboviruses in northern Tunisia. TOSV must be considered by physician and tested in diagnostic laboratories for patients with meningitis and unexplained fever in northern Tunisia.
Background: Sandfly-borne phleboviruses are present in North Africa where they can infect humans in regions where Leishmania infantum, the causative agent of zoonotic visceral leishmaniasis in the Western Mediterranean basin is present affecting both humans and dogs. We investigated the capacity of dogs to be used as sentinels for sandfly-borne phleboviruses as previously shown for leishmaniasis.
The current spread of zoonotic visceral leishmaniasis (ZVL) throughout arid areas of Central Tunisia is a major public health concern. The main objective of this study is to investigate whether the development of irrigation in arid bio-geographical areas in Central Tunisia have led to the establishment of a stable cycle involving sand flies of the subgenus Larroussius and Leishmania infantum, and subsequently to the emergence of ZVL. Sand flies were collected from the village of Saddaguia, a highly irrigated zone located within an arid bio-geographical area of Central Tunisia by using modified Centers for Diseases Control (CDC) light traps. Morphological keys were used to identify sand flies. Collected sand flies were pooled with up to 30 specimens per pool according to date and tested by nested Polymerase Chain Reaction (PCR) DNA sequencing from positive pools was used to identify Leishmania spp. A total of 4915 sand flies (2422 females and 2493 males) were collected from Saddaguia in September and in October 2014. Morphological identification confirmed sand flies of the subgenus Larroussius to be predominant. PCR analysis followed by DNA sequencing indicated that 15 pools were infected with L. infantum yielding an overall infection rate of 0.6%. The majority of the infected pools were of sand fly species belonging to subgenus Larroussius. Intense irrigation applied to the arid bio-geographical areas in Central Tunisia is at the origin of the development of an environment capable of sustaining important populations of sand flies of the subgenus Larroussius. This has led to the establishment of stable transmission cycles of L. infantum and subsequently to the emergence of ZVL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.