Background: Animal spinal cord injury (SCI) models have provided a better perception of the mechanisms related to traumatic SCI and evaluation of the effectiveness of experimental therapeutic interventions. Objectives: The aim of this study is to develop a cost-effective modified Allen's device to induce contusive spinal cord injury. Methods: Adult male Wistar rats were subjected to contusive spinal cord injury using a customized weight drop model through 10-g weights delivered from a 25-mm height onto an exposed spinal cord. Locomotor and sensory function during 28 days were assessed. Moreover, histopathological changes were assessed at one week and 28 days post SCI. Results: All the SCI rats showed hind limb paralysis up to 48 h post SCI and neuropathic pain after injury. Histological changes similar to the previous reports for contusion model were observed. Conclusions: According to our findings, little variability was observed in the BBB score of individual rats at 28 days after injury. Our customized device to induce spinal cord injury is a simple and inexpensive alternative method to the highly sophisticated contusion device commonly used to induce SCI.
Background: Brain penetrating blast injury is a leading cause of early death due to excessively elevated intracranial pressure (ICP), culminating in trans-tentorial herniation. The role of craniectomy to decrease ICP and secondary injuries has been controversial particularly in pediatric patients. Three cases of pediatric penetrating blast injuries undergoing decompressive craniectomy are reported in Methods: The current study was a prospective series, including fifteen cases of pediatric blast-related brain injury referred to the emergency ward during a period of two years. Three survived patients had a Glasgow Coma Scale (GCS) of four along with anisocoric pupillary light reflex (PLR). Decompressive craniectomy and ventriculostomy (EVD) were performed. The patients underwent ICP monitoring for two weeks. Results: Early postoperative GCS (5 days) was 7/15 in all three patients. Two weeks and one month’s GCS were 9 and 14, respectively. After three months, cranioplasty was performed. Long-term follow-up detected no major motor deficits after one year and was associated with excellent school performance. Neuroplasticity resulted in contralateral dominancy and handedness in one case. Conclusions: Survivors of pediatric blast brain injury had a favorable outcome after decompressive craniectomy in the current paper. However, there was a limited number of patients, and the results could not be generalized. Further research in this regard with larger sample size is recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.