It is currently unclear which donor specific HLA antibodies confer the highest risk of antibody-mediated rejection (AMR) and allograft loss. In this study, we hypothesized that two distinct features (HLA IgG subclass and Fcγ receptor (FcγR) polymorphisms), which vary from patient to patient, influence the process of monocyte trafficking to and macrophage accumulation in the allograft during AMR in an interrelated fashion. Here, we investigated the contribution of human IgG subclass and FcγR polymorphisms in monocyte recruitment in vitro by primary human aortic endothelium activated with chimeric anti-HLA I human IgG1 and IgG2. Both subclasses triggered monocyte adhesion to endothelial cells, via a two-step process. First, HLA I crosslinking by antibodies stimulated upregulation of P-selectin on endothelium irrespective of IgG subclass. P-selectin-induced monocyte adhesion was enhanced by secondary interactions of IgG with FcγRs, which was highly dependent upon subclass. IgG1 was more potent than IgG2 through differential engagement of FcγRs. Monocytes homozygous for FcγRIIa-H131 adhered more readily to HLA antibody-activated endothelium compared with FcγRIIa-R131 homozygous. Finally, direct modification of HLA I antibodies with immunomodulatory enzymes EndoS and IdeS dampened recruitment by eliminating antibody-FcγR binding, an approach that may have clinical utility in reducing AMR and other forms of antibody-induced inflammation.
A synthetically lethal precision medicine therapy for HK1-HK2+ multiple myeloma using an HK2 antisense oligonucleotide, metformin, and perhexiline. Most normal tissues Tolerated Tolerated HK1 + HK2 + multiple myeloma HK 2-A SO Me tfo rmi n Per hex ilin e HK1-HK2 + multiple myeloma Glucose-6-P Glucose-6-P Glucose Glucose HK1 HK2 HK2 Synthetically lethal Although the majority of adult tissues express only hexokinase 1 (HK1) for glycolysis, most cancers express hexokinase 2 (HK2) and many coexpress HK1 and HK2. In contrast to HK1 þ HK2 þ cancers, HK1 À HK2 þ cancer subsets are sensitive to cytostasis induced by HK2 shRNA knockdown and are also sensitive to synthetic lethality in response to the combination of HK2 shRNA knockdown, an oxidative phosphorylation (OXPHOS) inhibitor diphenyleneiodonium (DPI), and a fatty acid oxidation (FAO) inhibitor perhexiline (PER). The majority of human multiple myeloma cell lines are HK1 À HK2 þ. Here we describe an antisense oligonucleotide (ASO) directed against human HK2 (HK2-ASO1), which suppressed HK2 expression in human multiple myeloma cell cultures and human multiple myeloma mouse xenograft models. The HK2-ASO1/DPI/PER triple-combination achieved synthetic lethality in multiple myeloma cells in culture and prevented HK1 À HK2 þ multiple myeloma tumor xenograft progression. DPI was replaceable by the FDA-approved OXPHOS inhibitor metformin (MET), both for synthetic lethality in culture and for inhibition of tumor xenograft progression. In addition, we used an ASO targeting murine HK2 (mHK2-ASO1) to validate the safety of mHK2-ASO1/MET/PER combination therapy in mice bearing murine multiple myeloma tumors. HK2-ASO1 is the first agent that shows selective HK2 inhibition and therapeutic efficacy in cell culture and in animal models, supporting clinical development of this synthetically lethal combination as a therapy for HK1 À HK2 þ multiple myeloma. Significance: A first-in-class HK2 antisense oligonucleotide suppresses HK2 expression in cell culture and in in vivo, presenting an effective, tolerated combination therapy for preventing progression of HK1 À HK2 þ multiple myeloma tumors.
Both IgM and IgA exist as polymeric immunoglobulins. IgM is assembled into pentamers with J chain and hexamers lacking J chain. In contrast, polymeric IgA exists mostly as dimers with J chain. Both IgM and IgA possess an 18-amino acid extension of the C terminus (the tail-piece (tp)) that participates in polymerization through a penultimate cysteine residue. The IgM (tp) and IgA (␣tp) tail-pieces differ at seven amino acid positions. However, the tail-pieces by themselves do not determine the extent of polymerization. We now show that the restriction of polymerization to dimers requires both C ␣ 3 and ␣tp and that more efficient dimer assembly occurs when C ␣ 2 is also present; the dimers contain J chain. Formation of pentamers containing J chain requires C 3, C 4, and the tp. IgM-␣tp is present mainly as hexamers lacking J chain, and ␥-tp forms tetramers and hexamers lacking J chain, whereas IgA-tp is present as high order polymers containing J chain. In addition, there is heterogeneous processing of the Nlinked carbohydrate on IgA-tp, with some remaining in the high mannose state. These data suggest that in addition to the tail-piece, structural motifs in the constant region domains are critical for polymer assembly and J chain incorporation.
Multiple myeloma (MM), a plasma cell malignancy, is the second most prevalent hematologic malignancy in the US. Although much effort has been made trying to understand the etiology and the complexities of this disease with the hope of developing effective therapies, MM remains incurable at this time. Because of their antiproliferative and proapoptotic activities, interferons (IFNs) have been used to treat various malignancies, including MM. Although some success has been observed, the inherent toxicities of IFNs limit their efficacy. To address this problem, we produced anti-CD138 antibody fusion proteins containing either IFNα2 or a mutant IFNα2 (IFNα2(YNS)) with the goal of targeting IFN to CD138-expressing cells, thereby achieving effective IFN concentrations at the site of the tumor in the absence of toxicity. The fusion proteins inhibited the proliferation and induced apoptosis of U266, ANBL-6, NCI-H929, and MM1-144 MM cell lines. The fusion proteins decreased the expression of IFN regulatory factor 4 (IRF4) in U266. In addition, the fusion proteins were effective against primary cells from MM patients, and treatment with fusion proteins prolonged survival in the U266 murine model of MM. These studies show that IFNα antibody fusion proteins can be effective novel therapeutics for the treatment of MM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.