We have produced novel bispecific antibodies by fusing the DNA encoding a single chain antibody (ScFv) after the C terminus (CH3-ScFv) or after the hinge (Hinge-ScFv) with an antibody of a different specificity. The fusion protein is expressed by gene transfection in the context of a murine variable region. Transfectomas secrete a homogeneous population of the recombinant antibody with two different specificities, one at the N terminus (anti-dextran) and one at the C terminus (anti-dansyl). The CH3-ScFv antibody, which maintains the constant region of human IgG3, has some of the associated effector functions such as long half-life and Fc receptor binding. The Hinge-ScFv antibody which lacks the CH2 and CH3 domains has no known effector functions.
A genetically engineered chimeric HIRMAb has been produced, and the chimeric antibody has identical reactivity to the human and primate BBB HIR as the original murine antibody. This chimeric HIRMAb may be used in humans for drug targeting through the BBB of neurodiagnostic or neurotherapeutic drugs that normally do not cross the BBB.
Both IgM and IgA exist as polymeric immunoglobulins. IgM is assembled into pentamers with J chain and hexamers lacking J chain. In contrast, polymeric IgA exists mostly as dimers with J chain. Both IgM and IgA possess an 18-amino acid extension of the C terminus (the tail-piece (tp)) that participates in polymerization through a penultimate cysteine residue. The IgM (tp) and IgA (␣tp) tail-pieces differ at seven amino acid positions. However, the tail-pieces by themselves do not determine the extent of polymerization. We now show that the restriction of polymerization to dimers requires both C ␣ 3 and ␣tp and that more efficient dimer assembly occurs when C ␣ 2 is also present; the dimers contain J chain. Formation of pentamers containing J chain requires C 3, C 4, and the tp. IgM-␣tp is present mainly as hexamers lacking J chain, and ␥-tp forms tetramers and hexamers lacking J chain, whereas IgA-tp is present as high order polymers containing J chain. In addition, there is heterogeneous processing of the Nlinked carbohydrate on IgA-tp, with some remaining in the high mannose state. These data suggest that in addition to the tail-piece, structural motifs in the constant region domains are critical for polymer assembly and J chain incorporation.
In this article we show how the polymerase chain reaction (PCR) and primers designed for conserved sequences of leader (L), framework one (FR1) and constant (CONST) regions of immunoglobulin light and heavy chain genes can be used for the cloning and sequencing of rearranged antibody variable regions from mouse hybridoma cells. RNA was extracted from the mouse hybridoma cells secreting MAbs: IOR-T3a (anti-CD3), C6 (anti-P1 of N. meningitidis B385), IOR-T1 (anti-CD6), CB-CEA.1 (anti-carcinoembryonic antigen), and CB-Fib.1 (anti-human fibrin). First strand cDNA was synthesized and amplified using PCR. The newly designed primers are superior to others reported recently in the literature. Isolated PCR DNA fragments of C6 and IOR-T3a were sequenced after asymmetric amplification, or M13 cloning. The FR1/CONST primer combinations selectively amplified mouse lights chain of groups kappa II, V, and VI, and heavy chains of groups IIa and IIc. The L/CONST primers for light chains amplified light chains from all four hybridomas. These methods greatly facilitate structural and functional studies of antibodies by reducing the efforts required to clone and sequence their variable regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.