Metal halide perovskites are the first solution processed semiconductors that can compete in their functionality with conventional semiconductors, such as silicon. Over the past several years, perovskite semiconductors have reported breakthroughs in various optoelectronic devices, such as solar cells, photodetectors, light emitting and memory devices, and so on. Until now, perovskite semiconductors face challenges regarding their stability, reproducibility, and toxicity. In this Roadmap, we combine the expertise of chemistry, physics, and device engineering from leading experts in the perovskite research community to focus on the fundamental material properties, the fabrication methods, characterization and photophysical properties, perovskite devices, and current challenges in this field. We develop a comprehensive overview of the current state-of-the-art and offer readers an informed perspective of where this field is heading and what challenges we have to overcome to get to successful commercialization.
In this study, the novel biomimetic aerogel-based composite scaffolds through a synergistic combination of wet chemical synthesis and advanced engineering approaches have successfully designed. To this aim, initially the photo-crosslinkable methacrylated silk fibroin (SF-MA) biopolymer and methacrylated hollow mesoporous silica microcapsules (HMSC-MA) as the main constituents of the novel composite aerogels were synthesized. Afterward, by incorporation of drug-loaded HMSC-MA into the self-assembled SF-MA, printable gel-based composite inks are developed. By exploiting micro-extrusion-based three-dimensional (3D) printing, SF-MA-HMSC composite gels are printed by careful controlling their viscosity to provide a means to control the shape fidelity of the resulted printed gel constructs. The developed scaffold has shown a multitude of interesting biophysical and biological performances. Namely, thanks to the photo-crosslinking of the gel components during the 3D printing, the scaffolds become mechanically more stable than the pristine SF scaffolds. Also, freeze-casting the printed constructs generates further interconnectivity in the printed pore struts resulting in the scaffolds with hierarchically organized porosities necessary for cell infiltration and growth. Importantly, HMSC incorporated scaffolds promote antibacterial drug delivery, cellular ingrowth and proliferation, promoting osteoblastic differentiation by inducing the expression of osteogenic markers and matrix mineralization. Finally, the osteoconductive, -inductive, and anti-infective composite aerogels are expected to act as excellent bone implanting materials with an extra feature of local and sustained release of drug for efficient therapy of bone-related diseases.
Investigations on the effect of single or double A-site cation engineering on the photovoltaic performance of bismuth perovskite-inspired materials (A3Bi2I9) are rare. Herein, we report novel single- and double-cation based bismuth perovskite-inspired materials developed by (1) completely replacing CH3NH3+ (methylammonium, MA+) in MA3Bi2I9 with various organic cations such as CH(NH2)2+ (formamidinium, FA+), (CH3)2NH2+ (dimethylammonium, DMA+), C(NH2)3+ (guanidinium, GA+) and inorganic cations such as cesium (Cs+), rubidium (Rb+), potassium (K+), sodium (Na+) and lithium (Li+) and (2) partially replacing MA+ with Cs+ in different stoichiometric ratios. Compared to single-cation based bismuth perovskite devices, the double-cation bismuth perovskite device showed an increment in the device power conversion efficiency (PCE) up to 1.5% crediting to the reduction in the bandgap. This is the first study demonstrating double-cation based bismuth perovskite showing bandgap reduction and increment in device efficiency and opens up the possibilities towards compositional engineering for improved device performance. Graphic Abstract
Hybrid halide perovskites have made significant progress in achievably high photoconversion efficiencies (>25%) and stability as a function of their chemical engineering realized by isomorphous substitution at all three sites in AMX3 composition. Whereas the focus of current research lies on planar (2D) devices, this work brings forth an innovative structural engineering concept based on direct electrospinning of the three major perovskite solar cell components, namely, photoabsorber, hole, and electron transport materials, as continuous single triaxial fibers of μm radial dimensions (<5 μm). These perovskite fibers lay the foundation of materials engineering for fabricating tiny solar cells, which can either be woven into fabrics or incorporated as single fibers to power wearables and a variety of devices or sensors, forming the internet of things. The structures of the here presented coaxial CuSCN/MAPbI3 (MA = CH3NH3 +) and triaxial CuSCN/MAPbI3/ZnO‐Zn(OAc)2 composite fibers are verified by X‐ray diffraction data and electron microscopy coupled with energy dispersive spectroscopy and cross‐sectional analysis with focused ion beam. This work demonstrates the first report where the entire photovoltaic (PV) device and material configuration are achieved as concentric axial cables fabricated via single‐step electrospinning process.
Surface modification of nanocarriers enables selective attachment to specific molecular targets within a complex biological environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.