With the ever-growing demand of electric power, it is quite challenging to detect and prevent Non-Technical Loss (NTL) in power industries. NTL is committed by meter bypassing, hooking from the main lines, reversing and tampering the meters. Manual on-site checking and reporting of NTL remains an unattractive strategy due to the required manpower and associated cost. The use of machine learning classifiers has been an attractive option for NTL detection. It enhances data-oriented analysis and high hit ratio along with less cost and manpower requirements. However, there is still a need to explore the results across multiple types of classifiers on a real-world dataset. This paper considers a real dataset from a power supply company in Pakistan to identify NTL. We have evaluated 15 existing machine learning classifiers across 9 types which also include the recently developed CatBoost, LGBoost and XGBoost classifiers. Our work is validated using extensive simulations. Results elucidate that ensemble methods and Artificial Neural Network (ANN) outperform the other types of classifiers for NTL detection in our real dataset. Moreover, we have also derived a procedure to identify the top-14 features out of a total of 71 features, which are contributing 77% in predicting NTL. We conclude that including more features beyond this threshold does not improve performance and thus limiting to the selected feature set reduces the computation time required by the classifiers. Last but not least, the paper also analyzes the results of the classifiers with respect to their types, which has opened a new area of research in NTL detection.
Physical activity is essential for physical and mental health, and its absence is highly associated with severe health conditions and disorders. Therefore, tracking activities of daily living can help promote quality of life. Wearable sensors in this regard can provide a reliable and economical means of tracking such activities, and such sensors are readily available in smartphones and watches. This study is the first of its kind to develop a wearable sensor-based physical activity classification system using a special class of supervised machine learning approaches called boosting algorithms. The study presents the performance analysis of several boosting algorithms (extreme gradient boosting—XGB, light gradient boosting machine—LGBM, gradient boosting—GB, cat boosting—CB and AdaBoost) in a fair and unbiased performance way using uniform dataset, feature set, feature selection method, performance metric and cross-validation techniques. The study utilizes the Smartphone-based dataset of thirty individuals. The results showed that the proposed method could accurately classify the activities of daily living with very high performance (above 90%). These findings suggest the strength of the proposed system in classifying activity of daily living using only the smartphone sensor’s data and can assist in reducing the physical inactivity patterns to promote a healthier lifestyle and wellbeing.
Power companies are responsible for producing and transferring the required amount of electricity from grid stations to individual households. Many countries suffer huge losses in billions of dollars due to non-technical loss (NTL) in power supply companies. To deal with NTL, many machine learning classifiers have been employed in recent time. However, few has been studied about the performance evaluation metrics that are used in NTL detection to evaluate how good or bad the classifier is in predicting the non-technical loss. This paper first uses three classifiers: random forest, K-nearest neighbors and linear support vector machine to predict the occurrence of NTL in a real dataset of an electric supply company containing approximately 80,000 monthly consumption records. Then, it computes 14 performance evaluation metrics across the three classifiers and identify the key scientific relationships between them. These relationships provide insights into deciding which classifier can be more useful under given scenarios for NTL detection. This work can be proved to be a baseline not only for the NTL detection in power industry but also for the selection of appropriate performance evaluation metrics for NTL detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.