Vascular restenosis involves contraction, proliferation, and remodeling of the arterial wall in response to overstretch injury. Mitogen-activated protein kinases (MAPKs) are implicated in both contraction and proliferation of vascular smooth muscle (VSM), and studies of porcine carotid arterial muscle strips have shown that mechanical stretch leads to the activation of the extracellular signal-regulated kinase (ERK) family of MAPKs in vivo. We, therefore, analyzed the acute effect of mechanical overstretch injury on ERK-MAPK (herein referred to simply as MAPK) activity in porcine coronary and carotid arteries in vivo. Balloon angioplasty catheters were inflated to 6 atm three times over 5 minutes at a balloon-artery ratio of 1.2:1 in either porcine coronary or carotid arteries. The arteries were snap-frozen after angioplasty, and MAPK activity was measured. Angioplasty of the left anterior descending (LAD, n = 5), left circumflex (LCx, n = 5), and carotid (n = 5) arteries effected an increase in MAPK activity compared with the activity in uninstrumented right coronary arteries (RCAs) or carotid arteries from the same animals used for controls. Balloon angioplasty of carotid arteries led to an increase in MAPK activity that was 7.7-fold over the activity in control arteries and comparable to the activity in stretched carotid arterial muscle strips in vivo. The increase in coronary artery kinase activity on angioplasty was variable from animal to animal. The increase in MAPK activity over that in control arteries ranged from 4.5- to 31.7-fold (mean +/- SEM, 10.7 +/- 5.3) in the LAD and 1.8- to 31.3-fold (mean +/- SEM, 9.7 +/- 5.7) in the LCx. There were no apparent inherent differences in the levels of MAPK activity in the three different types of coronary arteries (RCA, LAD, and LCx) without instrumentation. MAPK activation occurs rapidly during angioplasty, suggesting that this kinase may play an early role in initiating the injury response in both porcine coronary and carotid arteries. MAPKs may be key enzymes targeted to treat or prevent restenosis.
Adenoviral vectors are promising agents for a number of in vivo gene therapy applications including diseases of the heart and coronary vessels. Efficient intravascular gene transfer to specific sites has been achieved in occluded vessels, but otherwise is hampered by the effect of blood flow on localized vector uptake in the vessel wall. An alternative delivery approach to coronary arteries is the expression of diffusible gene products into the pericardial space surrounding the heart and coronary arteries. However, in vivo pericardial access is comparatively difficult and has been limited to surgical approaches. We hypothesized that efficient adenovirus‐mediated gene expression in pericardial lining mesothelium could be achieved by transmyocardial vector delivery to the pericardium. To evaluate this concept, a hollow, helical‐tipped penetrating catheter was used to deliver vector‐containing fluid directly into the intrapericardial space. The catheter was introduced percutaneously in anesthetized mongrel dogs, advanced into the right ventricle, and the tip passed through the apical right ventricular myocardium under direct radiographic visualization until the open end of the catheter tip resided in the intrapericardial space. Adenoviral vectors expressing either nuclear‐localizing beta‐galactosidase, cytoplasmic luciferase, or secreted human α1AT reporters (Av1nBg, Av1Lu, or Av1Aa, respectively) were instilled through the catheter into the intrapericardial space. Three days later the animals were sacrificed and reporter gene expression was evaluated in pericardium, epicardium, and multiple other tissues. In animals receiving Av1nBg, beta‐galactosidase activity was evident in most of the pericardial lining endothelium, up to 100% in many areas. In animals receiving Av1Lu, luciferase reporter activity was abundant in pericardial tissues, but near‐background levels were observed in other organs. In animals receiving Av1Aa, human α1AT was abundant (16–29 mg/ml) in pericardial fluid, but was undetectable in serum. All animals tolerated the procedure well with no electrocardiographic changes and no clinical sequelae. These observations demonstrate highly efficient adenovirus vector delivery and gene transfer and expression in the pericardium and support the feasibility of localized gene therapy via catheter‐based pericardial approaches. We suggest that the pericardial sac may serve as a sustained‐release protein delivery system for the generation of desired gene products or their metabolites for diffusion into the epicardial region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.