Tissue microarrays (TMAs) are potentially suited to find associations between molecular features and clinical outcome. Enhanced cell proliferation, as measured by Ki67 immunohistochemistry, is related to poor patient prognosis in many different tumor types. Ki67 expression shows considerable intratumoral heterogeneity. It is unclear if the TMA format is suitable for the analysis of potentially heterogeneous markers because of the small size of TMA spots. We have analyzed a breast cancer TMA containing 2,517 breast tissues, including 2,222 neoplastic and 295 normal or premalignant samples, for Ki67 labeling index (Ki67 LI) and additional markers with a known relationship to Ki67 LI by immunohistochemistry (ER, PR, Bcl-2, Egfr, p16, p53) and Fluorescence in situ hybridization (HER2, MDM2, CCND1, MYC). A high Ki67 LI was linked to tumor phenotype including grade (p < 0.0001), stage (p < 0.0001), nodal stage (p = 0.0018), and patient prognosis (p < 0.0001), elevated protein levels of p53, p16 and Egfr, reduced levels of Bcl2, ER, and PR (p < 0.0001 each), as well as amplifications of HER2, MYC, CCND1 and MDM2 (p < 0.0001 each). In summary, all expected associations between Ki67 and the analyzed molecular markers could be reproduced with high statistical significance using a TMA containing only one tissue sample per tumor, measuring 0.6 mm in diameter. We conclude that associations with cell proliferation can be reliably analyzed in a TMA format.
Curcumin has been shown to possess variety of biological functions including anti-tumor activity. The mechanism by which curcumin inhibit cell proliferation remains poorly understood. In the present report, we investigated the effect of curcumin on the activation of apoptotic pathway in T-cell acute lymphoblastic leukemia (T-ALL) malignant cells. Our data demonstrate that curcumin causes dose dependent suppression of proliferation in several T cell lines. Curcumin treatment causes the de-phosphorylation/inactivation of constitutively active AKT, FOXO transcription factor and GSK3. Curcumin also induces release of cytochrome c accompanied by activation of caspase-3 and PARP cleavage. In addition, zVAD-fmk, a universal inhibitor of caspases, prevents caspase-3 activation and abrogates cell death induced by curcumin treatment. Finally, treatment of T-ALL cells with curcumin down-regulated the expression of inhibitor of apoptosis protein (IAPs). Taken together, our finding suggest that curcumin suppresses constitutively activated targets of PI3'-kinase (AKT, FOXO and GSK3) in T cells leading to the inhibition of proliferation and induction of caspase-dependent apoptosis.
SummaryModern research technologies, including DNA, protein, and antibody microarrays identify a steadily growing number of clues that are useful in molecular disease classification, drug development, and the prediction of response to treatment. Subsequent validation of the clinical importance of such candidate genes or proteins requires large-scale analysis of human tissues. To date, this analysis constitutes an important bottleneck in the process of discovery because tissue analysis by the conventional slide-by-slide strategy is slow and expensive. To overcome these limitations, tissue microarray (TMA) technology has been developed. TMA allows for the simultaneous analysis of up to 1,000 tissue samples in a single experiment, using all types of in-situ analyses including immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), and RNA in situ hybridization (RNA-ISH). TMA technology has the potential to greatly facilitate the translation of basic research into clinical practice. Potential applications include the establishment of associations between molecular changes and clinical endpoints, testing of potential therapeutic targets using tissue samples from specific cancer patients, standardization of molecular detection of targets, and rapid translation of results from cell lines and animal models to human cancer. Because of its beneficial economic aspects and ability to differentiate ethnic differences in tumor biology, TMA applications may become particularly important in developing countries.
Recent studies have suggested a potential prognostic role of alterations of the fragile histidine triad (FHIT) gene in diffuse large B-cell lymphoma. To evaluate possible mechanisms of FHIT inactivation and to further clarify its potential prognostic relevance, we analyzed a set of 114 diffuse large B-cell lymphoma with clinical follow-up information. Tissue microarrays were analyzed by immunohistochemistry for protein expression, and corresponding DNA samples were analyzed for FHIT promotor hypermethlyation. Reduced or absent FHIT expression was found in 75 of 114 diffuse large B-cell lymphoma (66%), but was unrelated to clinical tumor stage or patient prognosis. FHIT promotor hypermethylation was observed in 29 of 93 (23%) interpretable diffuse large B-cell lymphoma. Hypermethylation was not significantly correlated to protein expression loss, which could be explained by competing mechanisms for FHIT inactivation in a substantial fraction of non FHIT hypermethylated diffuse large B-cell lymphoma. Hypermethylation was significantly associated with poor prognosis of diffuse large B-cell lymphoma patients and predominantly seen in nongerminal center diffuse large B-cell lymphoma (27%), but less frequent (13%) in germinal center diffuse large B-cell lymphoma. In summary, these data suggest that promotor hypermethylation is responsible for reduced FHIT expression in a substantial subset of diffuse large B-cell lymphoma, which is primarily composed of nongerminal center subtype with poor patient prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.