Inflammation is all a pervasive phenomenon, which is elicited by the body in response to obnoxious stimuli as a protective measure. However, sustained inflammation leads to several diseases including cancer. Therefore it is necessary to neutralize inflammation. Sonapatha (Oroxylum indicum), a medicinal plant, is traditionally used as a medicine in Ayurveda and other folk systems of medicine. It is commonly used to treat inflammatory diseases including rheumatoid arthritis and asthma. Despite this fact its anti-inflammatory and analgesic effects are not evaluated scientifically. Therefore, the anti-inflammatory and analgesic activities of Sonapatha (Oroxylum indicum) were studied in Swiss albino mice by different methods. The hot plate, acetic acid, and tail immersion tests were used to evaluate the analgesic activity whereas xylene-induced ear edema and formalin induced paw edema tests were used to study the anti-inflammatory activity of Sonapatha. The administration of mice with 250 and 300 mg/kg b.wt. of O. indicum reduced pain and inflammation indicating that Sonapatha possesses analgesic and anti-inflammatory activities. The maximum analgesic and anti-inflammatory activities were observed in mice receiving 300 mg/kg b.wt. of O. indicum ethanol extract. Our study indicates that O. indicum possesses both anti-inflammatory and analgesic activities and it may be useful as an anti-inflammatory agent in the inflammation related disorders.
The cancer-protective ability of hesperidin was investigated on 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced skin carcinogenesis in Swiss albino mice. Topical application of DMBA+TPA on mice skin led to 100% tumour incidence and rise in average number of tumours. Administration of different doses of hesperidin (HPD) before (pre) or after (post) and continuous (pre and post) DMBA application significantly reduced tumour incidence and average number of tumours in comparison to DMBA+TPA treatment alone. Topical application of DMBA+TPA increased oxidative stress as shown by significantly increased TBARS values and reduced glutathione contents, and glutathione-S-transferase, superoxide dismutase and catalase activities. Hesperidin treatment significantly reduced TBARS values and elevated glutathione concentration and glutathione-S-transferase, superoxide dismutase and catalase activities in the skin/tumors of mice treated with HPD+DMBA+TPA, HPD+DMBA+TPA+HPD or DMBA+TPA+HPD when compared to DMBA+TPA application alone. The study of molecular mechanisms showed that hesperidin suppressed expression of Rassf7, Nrf2, PARP and NF-κB in a dose dependent manner with a maximum inhibition at the level of 300 mg/kg body weight hesperidin. In conclusion, oral administration of hesperidin protected mice against chemical carcinogenesis by increasing antioxidant status, reducing DMBA+TPA induced lipid peroxidation and inflammatory response, and repressing of Rassf7, Nrf2, PARP and NF-κB levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.