<p><strong>Objective: </strong>This study evaluates the potential neuroprotective of the pomegranate juice against chronic intoxication with lead acetate for 3<strong> </strong>months.</p><p><strong>Methods: </strong>Twenty-one female Swiss mice divided into 3 groups were employed in the present investigation. Control group: received drinking water for 90 days, neurotoxic group were exposed to 1000 ppm of lead acetate in the drinking water for 12 weeks, and neurotoxic treated group represents the mice received treatment with juice pomegranate diluted with distilled water (v/v) orally for 4 h / day followed by lead acetate at a dose of 1000 ppm orally for 20 h / day for 90 days. After cessation of treatment, neurobehavioral studies using the open field test, black and white test box and swimming test were made. In the next phase, brain injury was assessed histologically with hematoxylin-eosin staining.</p><p><strong>Results:</strong> Chronic exposure to lead led to significant increase in the level of anxiety, depression and the locomotor activity (P < 0.05). It was confirmed by histopathological alterations in many areas of the cerebral cortex and hippocampus including neuronal degeneration and decrease cell density. Treatment with the juice significantly improve the level of depression, locomotor function (P < 005) and anxiety (P > 0.05) in mice exposed to lead as well as restored the histological structure in cerebral cortex and hippocampus of mice. The total phenolic and flavonoids content in juice of pomegranate was found to be 3809. 8±29.404 mg GAE/l; 2109. 57±18.936 mg QE /l of juice.</p><p><strong>Conclusion: </strong>This finding suggests that phenolic compounds found in pomegranate juice provide a neuroprotective effect on behavioural impairments and histopathological change induced by lead.</p>
Rhamnus alaternus L. is a Rhamnaceae shrub and a popular traditional medicine in Algeria. The present research objective was to investigate the antioxidant, genotoxic, and antigenotoxic properties of R. alaternus methanolic leaf extract. Antiradical scavenging activity was tested by α, α-diphenyl-β-picrylhydrazyl free radical scavenging and β-carotene bleaching method. DNA damage and repair were measured by the Allium cepa test with sodium azide as a mutagenic agent. Mitotic index and chromosomal aberrations were calculated by microscopy of meristem roots stained with 2% carmine acetic. The methanolic extract of R. alaternus leaves inhibited the free radical DPPH (IC50 = 0.74 ± 0.3 mg/mL) and prevented the oxidation of β-carotene (50.71 ± 4.17%). The root phenotyping showed that sodium azide changed their color and shape, decreased their stiffness, and significantly reduced their length. The roots treated with both R. alaternus leaf extract and sodium azide demonstrated a better root growth. The roots treated with the methanolic extract were much longer than the control roots (P < 0.001). The microscopy images of root meristem treated with the sodium azide mitodepressant agent showed significant chromosomal aberrations, which indicated a disruption of the cell cycle. The R. alaternus leaf extract appeared to have a beneficial effect on cytotoxicity. The antioxidant properties of R. alaternus L. makes this plant an excellent genoportector.
Introduction. Myrtus communis, Aristolochia longa, and Calycotome spinosa are medicinal plants frequently used in Algeria. Some plants can cause a fragility of the erythrocyte membrane and lead to hemolysis. Therefore, we aimed to study the cytotoxicity of aqueous extracts from the aerial part of these species against red blood cells. Study objects and methods. The hemolytic effect was determined spectrophotometrically by incubating an erythrocyte solution with different concentrations of the aqueous extracts (25, 50, 100, and 200 mg/mL) at 37°C during one hour. In addition, we performed phytochemical screening and measured the contents of polyphenols and flavonoids. Results and discussion. After one hour of incubation of human red blood cells with the aqueous extracts at different concentrations, the hemolysis percentage showed a significant leak of hemoglobin with A. longa (68.75 ± 6.11%; 200 mg/mL), the most toxic extract followed by C. spinosa (34.86 ± 5.06%; 200 mg/mL). In contrast, M. communis showed very low cytotoxicity (20.13 ± 3.11%; 200 mg/mL). Conclusion. These plants are sources of a wide range of bioactive compounds but their use in traditional medicine must be adapted to avoid any toxic effect.
Nowadays, because of the industrialization, a lot of contaminant were available ; the consequences of this availability are apparition of diseases including neurodegeneration. Neurodegenerative diseases of the human brain comprise a variety of disorders that affect an increasing percentage of the population. This study is based on the effect of the Boswellic resin, which is from a medicinal plant and known for its antioxidant effects on nerve cell damage. The objective of this work was to evaluate the in vitro and in vivo effects of the Boswellic resin on anticholinesterase activity and Alzheimer’s disease (AD) induced by D-galactose and aluminum tetrachloride in Swiss mice. Chemical composition of the resin essential oil was identified by the CG-MS analysis. The antioxidant activity was also assessed by the DMPD and metal chelation methods. In order to understand the mechanism of memory improvement, the acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, inhibitory assays were performed. In vivo part of the study was achieved on Swiss mice divided into four groups: control, AD model, treated AD, and treated control group. The identification of chemical composition by CG-MS reach the 89.67% of the total extract compounds presented some very important molecules (p-Cymene, n-Octyl acetate, α-Pinene…). The present study proves that Boswellic resin improves memory and learning in treated Alzheimer’s group, modulates the oxidative stress and be involved in the protective effect against amyloid deposition and neurodegeneration, and stimulates the immune system in mice’s brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.