Compressed Sensing (CS) theory breaks the Nyquist theorem through random under-sampling and enables us to reconstruct a signal from 10%-50% samples. Magnetic Resonance Imaging (MRI) is a good candidate for application of compressed sensing techniques due to i) implicit sparsity in MR images and ii) inherently slow data acquisition process. In multi-slice MRI, strong inter-slice correlation has been exploited for further scan time reduction through interpolated compressed sensing (iCS). In this paper, a novel fast interpolated compressed sensing (FiCS) technique is proposed based on 2D variable density under-sampling (VRDU) scheme. The 2D-VRDU scheme improves the result by sampling the high energy central part of the k-space slices. The novel interpolation technique takes two consecutive slices and estimates the missing samples of the target slice (T slice) from its left slice (L slice). Compared to the previous methods, slices recovered with the proposed FiCS technique have a maximum correlation with their corresponding original slices. The proposed FiCS technique is evaluated by using both subjective and objective assessment. In subjective assessment, our proposed technique shows less partial volume loss compared to existing techniques. For objective assessment different performance metrics, such as structural similarity index measurement (SSIM), peak signal to noise ratio (PSNR), mean square error (MSE) and correlation, are used and compared with existing interpolation techniques. Simulation results on knee and brain dataset shows that the proposed FiCS technique has improved image quality and performance with even reduced scan time, lower computational complexity and maximum information content.
Visual object tracking is still considered a challenging task in computer vision research society. The object of interest undergoes significant appearance changes because of illumination variation, deformation, motion blur, background clutter, and occlusion. Kernelized correlation filter- (KCF) based tracking schemes have shown good performance in recent years. The accuracy and robustness of these trackers can be further enhanced by incorporating multiple cues from the response map. Response map computation is the complementary step in KCF-based tracking schemes, and it contains a bundle of information. The majority of the tracking methods based on KCF estimate the target location by fetching a single cue-like peak correlation value from the response map. This paper proposes to mine the response map in-depth to fetch multiple cues about the target model. Furthermore, a new criterion based on the hybridization of multiple cues i.e., average peak correlation energy (APCE) and confidence of squared response map (CSRM), is presented to enhance the tracking efficiency. We update the following tracking modules based on hybridized criterion: (i) occlusion detection, (ii) adaptive learning rate adjustment, (iii) drift handling using adaptive learning rate, (iv) handling, and (v) scale estimation. We integrate all these modules to propose a new tracking scheme. The proposed tracker is evaluated on challenging videos selected from three standard datasets, i.e., OTB-50, OTB-100, and TC-128. A comparison of the proposed tracking scheme with other state-of-the-art methods is also presented in this paper. Our method improved considerably by achieving a center location error of 16.06, distance precision of 0.889, and overlap success rate of 0.824.
The mathematical modelling and optimization of nonlinear problems arising in diversified engineering applications is an area of great interest. The Hammerstein structure is widely used in the modelling of various nonlinear processes found in a range of applications. This study investigates the parameter optimization of the nonlinear Hammerstein model using the abilities of the marine predator algorithm (MPA) and the key term separation technique. MPA is a population-based metaheuristic inspired by the behavior of predators for catching prey, and utilizes Brownian/Levy movement for predicting the optimal interaction between predator and prey. A detailed analysis of MPA is conducted to verify the accurate and robust behavior of the optimization scheme for nonlinear Hammerstein model identification.
Swarm intelligence-based metaheuristic algorithms have attracted the attention of the research community and have been exploited for effectively solving different optimization problems of engineering, science, and technology. This paper considers the parameter estimation of the control autoregressive (CAR) model by applying a novel swarm intelligence-based optimization algorithm called the Aquila optimizer (AO). The parameter tuning of AO is performed statistically on different generations and population sizes. The performance of the AO is investigated statistically in various noise levels for the parameters with the best tuning. The robustness and reliability of the AO are carefully examined under various scenarios for CAR identification. The experimental results indicate that the AO is accurate, convergent, and robust for parameter estimation of CAR systems. The comparison of the AO heuristics with recent state of the art counterparts through nonparametric statistical tests established the efficacy of the proposed scheme for CAR estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.