Compressed Sensing (CS) theory breaks the Nyquist theorem through random under-sampling and enables us to reconstruct a signal from 10%-50% samples. Magnetic Resonance Imaging (MRI) is a good candidate for application of compressed sensing techniques due to i) implicit sparsity in MR images and ii) inherently slow data acquisition process. In multi-slice MRI, strong inter-slice correlation has been exploited for further scan time reduction through interpolated compressed sensing (iCS). In this paper, a novel fast interpolated compressed sensing (FiCS) technique is proposed based on 2D variable density under-sampling (VRDU) scheme. The 2D-VRDU scheme improves the result by sampling the high energy central part of the k-space slices. The novel interpolation technique takes two consecutive slices and estimates the missing samples of the target slice (T slice) from its left slice (L slice). Compared to the previous methods, slices recovered with the proposed FiCS technique have a maximum correlation with their corresponding original slices. The proposed FiCS technique is evaluated by using both subjective and objective assessment. In subjective assessment, our proposed technique shows less partial volume loss compared to existing techniques. For objective assessment different performance metrics, such as structural similarity index measurement (SSIM), peak signal to noise ratio (PSNR), mean square error (MSE) and correlation, are used and compared with existing interpolation techniques. Simulation results on knee and brain dataset shows that the proposed FiCS technique has improved image quality and performance with even reduced scan time, lower computational complexity and maximum information content.
Visual object tracking is still considered a challenging task in computer vision research society. The object of interest undergoes significant appearance changes because of illumination variation, deformation, motion blur, background clutter, and occlusion. Kernelized correlation filter- (KCF) based tracking schemes have shown good performance in recent years. The accuracy and robustness of these trackers can be further enhanced by incorporating multiple cues from the response map. Response map computation is the complementary step in KCF-based tracking schemes, and it contains a bundle of information. The majority of the tracking methods based on KCF estimate the target location by fetching a single cue-like peak correlation value from the response map. This paper proposes to mine the response map in-depth to fetch multiple cues about the target model. Furthermore, a new criterion based on the hybridization of multiple cues i.e., average peak correlation energy (APCE) and confidence of squared response map (CSRM), is presented to enhance the tracking efficiency. We update the following tracking modules based on hybridized criterion: (i) occlusion detection, (ii) adaptive learning rate adjustment, (iii) drift handling using adaptive learning rate, (iv) handling, and (v) scale estimation. We integrate all these modules to propose a new tracking scheme. The proposed tracker is evaluated on challenging videos selected from three standard datasets, i.e., OTB-50, OTB-100, and TC-128. A comparison of the proposed tracking scheme with other state-of-the-art methods is also presented in this paper. Our method improved considerably by achieving a center location error of 16.06, distance precision of 0.889, and overlap success rate of 0.824.
Object tracking is still an intriguing task as the target undergoes significant appearance changes due to illumination, fast motion, occlusion and shape deformation. Background clutter and numerous other environmental factors are other major constraints which remain a riveting challenge to develop a robust and effective tracking algorithm. In the present study, an adaptive Spatio-temporal context (STC)-based algorithm for online tracking is proposed by combining the context-aware formulation, Kalman filter, and adaptive model learning rate. For the enhancement of seminal STC-based tracking performance, different contributions were made in the proposed study. Firstly, a context-aware formulation was incorporated in the STC framework to make it computationally less expensive while achieving better performance. Afterwards, accurate tracking was made by employing the Kalman filter when the target undergoes occlusion. Finally, an adaptive update scheme was incorporated in the model to make it more robust by coping with the changes of the environment. The state of an object in the tracking process depends on the maximum value of the response map between consecutive frames. Then, Kalman filter prediction can be updated as an object position in the next frame. The average difference between consecutive frames is used to update the target model adaptively. Experimental results on image sequences taken from Template Color (TC)-128, OTB2013, and OTB2015 datasets indicate that the proposed algorithm performs better than various algorithms, both qualitatively and quantitatively.
Visual object tracking (VOT) is a vital part of various domains of computer vision applications such as surveillance, unmanned aerial vehicles (UAV), and medical diagnostics. In recent years, substantial improvement has been made to solve various challenges of VOT techniques such as change of scale, occlusions, motion blur, and illumination variations. This paper proposes a tracking algorithm in a spatiotemporal context (STC) framework. To overcome the limitations of STC based on scale variation, a max-pooling-based scale scheme is incorporated by maximizing over posterior probability. To avert target model from drift, an efficient mechanism is proposed for occlusion handling. Occlusion is detected from average peak to correlation energy (APCE)-based mechanism of response map between consecutive frames. On successful occlusion detection, a fractional-gain Kalman filter is incorporated for handling the occlusion. An additional extension to the model includes APCE criteria to adapt the target model in motion blur and other factors. Extensive evaluation indicates that the proposed algorithm achieves significant results against various tracking methods.
During recent years correlation tracking is considered fast and effective by the virtue of circulant structure of the sampling data for learning phase of filter and Fourier domain calculation of correlation. During the occurrence of occlusion, motion blur and out of view movement of target, most of the correlation filter based trackers start to learn using erroneous samples and tracker starts drifting. Currently, adaptive correlation filter based tracking algorithms are being combined with redetection modules. This hybridization helps in redetection of the target in long term tracking. The redetection modules are mostly classifier, which classify the true object after tracking failure occurrence. The methods perform favorable during short term occlusion or partial occlusion. To further increase the tracking efficiency specifically during long term occlusion, while maintaining real time processing speed, this study proposes tracking failure avoidance method. We first propose, a strategy to detect the occlusion using two cues from the response map i.e., peak correlation score and peak to side lobe ratio. After successful detection of tracking failure, second strategy is proposed to save the target being getting more erroneous. Kalman filter based predictor continuously predicts the location during occlusion. Kalman filter passes this result to Support Vector Machine (SVM). When the target reappears in frame, support vector machine based classifier classifies the correct object using the predicted location of Kalman filter. This decreases the chance of tracking failure as Kalman filter continuously updates itself during occlusion and predicts the next location using its own previous prediction. Once the true object is detected by classifier after the clearance of occlusion, this result is forwarded to correlation filter tracker to resume its operation of tracking and updating its parameters. Together these two proposed schemes show significant improvement in tracking efficiency. Furthermore, this collaboration in redetection phase shows significant improvement in the tracking accuracy over videos containing six challenging aspects of visual object tracking as mentioned in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.