Abstract:The solution to equations of two viscous homogeneous incompressible fluid media with the pressure phase equilibrium in the case of a constant phase is obtained. The influence of the physical phase densities, saturation, volume and viscosity of substances constituting a two-phase continuum in the flow velocity and pressure is shown. Also, the solution admitting a limiting transition to the known solution of the problem of a flow of a viscous incompressible single-phase medium is constructed.
Abstract:The initial boundary value problem of the dynamics of fluid saturated porous media, described by three elastic parameters in the reversible hydrodynamic approximation, is numerically solved. A linear two-dimensional problem as dynamic equations of porous media for components of velocities, stresses and pore pressure is considered. The equations of motion are based on conservation laws and are consistent with thermodynamic conditions. In this case, a medium is considered to be ideally isotropic (in the absence of energy dissipation) and twodimensional heterogeneous with respect to space. For a numerical solution of the dynamic problem of poroelasticity we use the Laguerre transform with respect to time and the finite difference technique with respect to spatial coordinates on the staggered grids with fourth order of accuracy. The description of numerical implementation of the algorithm offered is presented, and its characteristics are analyzed. Numerical results of the simulation of seismic wave fields for the test layered models have been obtained on the multiprocessor computer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.