If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.
Trigonella foenum in graecum (Fenugreek) is a traditional herbal plant used to treat disorders like diabetes, high cholesterol, wounds, inflammation, gastrointestinal ailments, and it is believed to have anti-tumor properties, although the mechanisms for the activity remain to be elucidated. In this study, we prepared a methanol extract from Fenugreek whole plants and investigated the mechanism involved in its growth-inhibitory effect on MCF-7 human breast cancer cells. Apoptosis of MCF-7 cells was evidenced by investigating trypan blue exclusion, TUNEL and Caspase 3, 8, 9, p53, FADD, Bax and Bak by real-time PCR assays inducing activities, in the presence of FME at 65 µg/mL for 24 and 48 hours. FME induced apoptosis was mediated by the death receptor pathway as demonstrated by the increased level of Fas receptor expression after FME treatment. However, such change was found to be absent in Caspase 3, 8, 9, p53, FADD, Bax and Bak, which was confirmed by a time-dependent and dose-dependent manner. In summary, these data demonstrate that at least 90% of FME induced apoptosis in breast cell is mediated by Fas receptor-independently of either FADD, Caspase 8 or 3, as well as p53 interdependently.
Iron deficiency is a global epidemic affecting a third of the world’s population. Current efforts are focused on investigating sustainable ways to improve the bioavailability of iron in plant-based diets. Incorporating microgreens into the diet of at-risk groups in populations could be a useful tool in the management and prevention of iron deficiency. This study analysed and compared the mineral content and bioavailability of iron from microgreen and mature vegetables. The mineral content of rocket, broccoli and fenugreek microgreens and their mature counterparts was determined using microwave digestion and ICP-OES. Iron solubility and bioavailability from the vegetables were determined by a simulated gastrointestinal in vitro digestion and subsequent measurement of ferritin in Caco-2 cells as a surrogate marker of iron uptake. Iron contents of mature fenugreek and rocket were significantly higher than those of the microgreens. Mature fenugreek and broccoli showed significantly (p < 0.001) higher bioaccessibility and low-molecular-weight iron than found in the microgreens. Moreover, iron uptake by Caco-2 cells was significantly higher only from fenugreek microgreens than the mature vegetable. While all vegetables except broccoli enhanced FeSO4 uptake, the response to ferric ammonium citrate (FAC) was inhibitory apart from the mature rocket. Ascorbic acid significantly enhanced iron uptake from mature fenugreek and rocket. Microgreen fenugreek may be bred for a higher content of enhancers of iron availability as a strategy to improve iron nutrition in the populace.
Trigonella foenum-graecum L. (fenugreek), a member of the legume family (Fabaceae), is a promising source of bioactive phytochemicals, which explains its traditional use for a variety of metabolic disorders including cancer. The current study aimed to evaluate extracts of fenugreek seeds and sprouts, and some of their constituents, to compare their cytotoxic and antiproliferative activities in MCF-7 breast cancer cells. The extracts were chemically characterised using high-resolution accurate mass liquid chromatography-mass spectrometry to reveal the detection of compounds assigned as flavone C-glycosides including those derived from apigenin and luteolin, in addition to isoflavones. Five different flavones or their glycosides (apigenin, vicenin-2, vitexin, luteolin and orientin) and two isoflavones (daidzein and formononetin) were quantified in the fenugreek extracts. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay using MCF-7 cells treated with fenugreek methanolic extracts showed dose- and time-dependent effects on cell viability. The MCF-7 cancer cells treated with the fenugreek methanolic extracts also displayed increased relative mitochondrial DNA damage as well as suppressed metastasis and proliferation. This study demonstrates the potential anti-cancer effects of fenugreek seeds and sprouts and reveals fenugreek sprouts as an untapped resource for bioactive compounds.
Fenugreek (Trigonella foenum graecum) is an active constituent of many traditional medicines to alleviate many diseases including cancer, diabetes, high cholesterol, wounds, inflammation, and gastrointestinal ailments. Since, the mechanism of action of several anticancer drugs is based on their ability to induce apoptosis, the objective of the study was sought to characterize the downstream apoptotic genes regulated by fenugreek methanolic extract (FME) in SiHa cells. FME effectively kills SiHa cells through induction of apoptosis. IC50 was recorded at 75μg/mL while apoptosis was confirmed by TUNEL assay and q‐PCR assays. Cells were exposed to 75μg/mL FME for 24 and 48 hours, and apoptosis was found in 26.2% and 35.1% cells respectively. Further, expressions of proapoptotic genes e.g. Caspase 3, 8, 9, p53, Fas, FADD, Bax and Bak were studied by q‐PCR. Caspase 3, 8, 9, p53, Bax and Bak were found to be increased significantly whereas expressions Fas and Fadd did not show any significant changes. In summary, the induction of apoptosis by FCE is affected by its ability to increase the expression of pro‐apoptotic genes such as Caspase 3, 8, 9, p53, Bax and Bak and it holds promise for consideration in complementary therapy in cervix cancer patients under chemotherapeutic interventions upon further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.