Due to the technological revolution and higher user data demand, the telecommunication industry is expanding at an exponential rate. Fulfilling the increasing demand of energy for the rising cellular networks has become a great challenge to the network operators because of the limited reservation of fuel energy sources and the growing concern about global warming. Energy harvesting (EH) from renewable energy sources (RES) has become an overwhelming initiative to minimize energy deficiency and carbon footprints. This paper investigates the feasibility of solar photovoltaic (PV) and biomass resources based hybrid supply systems for powering the off-grid Long Term Evolution (LTE) cellular macrocell base stations (BSs) in Bangladesh focusing the technical, economic and environmental issues. In addition, the green energy sharing technique has been incorporated via a low resistive path for optimal use of RES. The proposed system has enough potential to achieve long term sustainability and reduction of pollution rates by fulfilling the future energy demand of BS. In this work, Hybrid Optimization Model for Electric Renewables (HOMER) simulation-based feasibility analysis is used to assess the optimal system, energy production, total net present cost (NPC), cost of electricity (COE) and greenhouse gas (GHG) emission depending on different system parameters. Furthermore, the performance of the network has been evaluated in terms of throughput and energy efficiency using Matlab-based Monte Carlo simulations. Results demonstrate that the proposed hybrid renewable energy powered BSs would be a reliable and longer-lasting green solution for the telecom sector while maintaining the quality of service (QoS). Finally, an extensive comparison with other systems has also been done to justify network validity. INDEX TERMS Biomass energy, energy efficiency, energy sharing, hybrid power supply, LTE, renewableenergy-powered BSs, solar energy, sustainability. I. INTRODUCTION With the remarkable increase in the number of mobile subscribers and high-speed data demand, cellular network operators are deploying a higher number of base stations throughout the world. According to the Ericsson survey, the number of the global mobile subscriber up to the first quarter of 2019 was around 7.9 billion, with 44 million new subscribers added during this quarter, wherein LTE subscribers are 3.7 billion [1]. Currently, Bangladesh has 88 million unique subscribers and it is expected that at the The associate editor coordinating the review of this manuscript and approving it for publication was Giovanni Pau. end of 2025, this value will be 107 million [2]. Global System for Mobile Communications Association (GSMA) mentiones that at present, the number of universal BSs is above 4 million and it is nearly double from 2007 to 2012 [3]. Base stations are the premier energy consumer of mobile networks which receive 57% of the total consumed energy [4], [5]. Over the last decades, the exponential evolution of information and communication technology (ICT) has...
A hybrid solar photovoltaic (PV)/biomass generator (BG) energy-trading framework between grid supply and base stations (BSs) is proposed in this article to address the power crisis of the utility grid, to enhance energy self-reliance, and to downsize the cost. The optimal size, technical criteria, energy generation, and different types of costs have been evaluated considering the dynamic behavior of solar radiation, traffic arrival intensity, and average biomass energy potential. Additionally, the wireless network performance in terms of total achievable throughput, spectral efficiency (SE), and energy efficiency (EE) are extensively examined using the MATLAB-based Monte-Carlo simulations taking multipath fading, system bandwidth, transmission power, and inter-cell interference (ICI) into consideration. The numerical results demonstrate that the energy-trading facility can achieve net present cost (NPC) and greenhouse gas saving up to 3.20% and 65.8%, respectively. In the end, the performance of the hybrid solar PV/BG system has been thoroughly compared with the standalone solar PV, hybrid PV/wind turbine (WT), and hybrid PV/diesel generator (DG) systems under on-grid and off-grid configurations for benchmarking.
With the proliferation of cellular networks, the ubiquitous availability of new-generation multimedia devices, and their wide-ranging data applications, telecom network operators are increasingly deploying the number of cellular base stations (BSs) to deal with unprecedented service demand. The rapid and radical deployment of the cellular network significantly exerts energy consumption and carbon footprints to the atmosphere. The ultimate objective of this work is to develop a sustainable and environmentally-friendly cellular infrastructure through compelling utilization of the locally available renewable energy sources (RES) namely solar photovoltaic (PV), wind turbine (WT), and biomass generator (BG). This article addresses the key challenges of envisioning the hybrid solar PV/WT/BG powered macro BSs in Bangladesh considering the dynamic profile of the RES and traffic intensity in the tempo-spatial domain. The optimal system architecture and technical criteria of the proposed system are critically evaluated with the help of HOMER optimization software for both on-grid and off-grid conditions to downsize the electricity generation cost and waste outflows while ensuring the desired quality of experience (QoE) over 20 years duration. Besides, the green energy-sharing mechanism under the off-grid condition and the grid-tied condition has been critically analyzed for optimal use of green energy. Moreover, the heuristic algorithm of the load balancing technique among collocated BSs has been incorporated for elevating the throughput and energy efficiency (EE) as well. The spectral efficiency (SE), energy efficiency, and outage probability performance of the contemplated wireless network are substantially examined using Matlab based Monte–Carlo simulation under a wide range of network configurations. Simulation results reveal that the proper load balancing technique pledges zero outage probability with expected system performance whereas energy cooperation policy offers an attractive solution for developing green mobile communications employing better utilization of renewable energy under the proposed hybrid solar PV/WT/BG scheme.
The enormous growth in the cellular networks and ubiquitous wireless services has incurred momentous energy consumption, greenhouse gas (GHG) emissions and thereby, imposed a great challenge to the development of energy-efficient sustainable cellular networks. With the augmentation of harvesting renewable energy, cellular base stations (BSs) are progressively being powered by renewable energy sources (RES) to reduce the energy crisis, carbon contents, and its dependency on conventional grid supply. Thus, the combined utilization of renewable energy sources with the electrical grid system is proving to be a more realistic option for developing an energy-efficient as well as an eco-sustainable system in the context of green mobile communications. The ultimate objective of this work is to develop a traffic-aware grid-connected solar photovoltaic (PV) optimal power supply system endeavoring the remote radio head (RRH) enabled heterogeneous networks (HetNets) aiming to minimize grid energy consumption and carbon footprint while ensuring long-term energy sustainability and energy efficiency (EE). Moreover, the load balancing technique is implemented among collocated BSs for better resource blocks (RBs) utilization and thereafter, the performance of the system is compared with an existing cell zooming enabled cellular architecture for benchmarking. Besides, the techno-economic feasibility of the envisaged system has been extensively analyzed using HOMER optimization software considering the dynamic nature of solar generation profile and traffic arrival rate. Furthermore, a thorough investigation is conducted with the help of Monte-Carlo simulations to assess the wireless network performance in terms of throughput, spectral efficiency (SE), and energy efficiency as well under a wide range of design scenarios. The numerical outcomes demonstrate that the proposed grid-tied solar PV/battery system can achieve a significant reduction of grid power consumption yielding up to 54.8% and ensure prominent energy sustainability with the effective modeling of renewable energy harvesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.