In this paper, we focus on an essential energy management approach for enhancing energy efficiency (EE) as well as reducing fuel consumption of off-grid cellular networks whose base stations (BSs) are supplied with hybrid power sources including solar PV array and diesel generator (DG). To take the full advantage of PV technology, this paper examines the reliability performance and carbon footprint implications in addition to EE. This paper also investigates the benefits of unevenly harvested green energy sharing mechanism under zero fuel consumption scheme via physically installed resistive power lines taking into account of dynamic nature of renewable energy (RE) generation and traffic arrival density. Furthermore, joint transmission coordinated multipoint (JT-CoMP) user association technique is integrated for achieving higher throughput and EE performance providing the best SINR quality to a connected user equipment (UE). A comprehensive Monte-Carlo based simulation study has been carried out for evaluating EE, EE index (EEI), and energy saving performances in downlink LTE-advanced networks under a wide range of network settings. The results reveal that the proposed system can attain up to 26% energy savings via cooperation mechanism and 48.7% more energy efficient in terms of EEI under peak load over the conventional hybrid paradigm. INDEX TERMS Renewable energy management, Green cellular network, Energy efficiency, Joint coordination, LTE-A.
The widespread proliferation of internet access, affordable wireless gadgets, the user data demand and the corresponding extended cellular networks entailing significant energy consumption and carbon footprints. With the added benefits of renewable energy harvesting (REH) technology, telecom base stations (BSs) are predominantly supplied by green power sources to reduce operational expenditure (OPEX) and atmospheric pollution with guaranteed quality of service (QoS). Accordingly, this paper examines the plausibility of optimal power supply solutions such as standalone solar photovoltaic (PV), hybrid PV/wind turbine (PV/WT), hybrid PV/diesel generator (DG) and hybrid PV/electric grid (PV/EG) to feed the Long Term Evolution (LTE) BSs pertaining to technical, economic and environmental aspects in Bangladesh. An extensive Monte-Carlo based simulations are performed to evaluate wireless network performance in terms of throughput, energy efficiency (EE), energy efficiency gain (EE gain), average energy savings, radio efficiency varying system bandwidth (B) and BS transmission power (P TX) considering the dynamic behavior of traffic intensity and renewable energy (RE) generation profile. By leveraging the cell zooming technique and a green traffic steering framework endeavors to minimize the net present cost and maximize the average energy savings as well. The simulation results reveal that the cell zooming technique attained energy savings yielding up to 36% and improvement of EE gain achieved about 23% with effective modeling of REH. Subsequently, a comprehensive comparison of the aforementioned schemes is pledged for further validation. INDEX TERMS Green cellular networks, renewable energy harvesting, hybrid energy, energy efficiency, cell zooming, eco-sustainability, LTE.
Due to the technological revolution and higher user data demand, the telecommunication industry is expanding at an exponential rate. Fulfilling the increasing demand of energy for the rising cellular networks has become a great challenge to the network operators because of the limited reservation of fuel energy sources and the growing concern about global warming. Energy harvesting (EH) from renewable energy sources (RES) has become an overwhelming initiative to minimize energy deficiency and carbon footprints. This paper investigates the feasibility of solar photovoltaic (PV) and biomass resources based hybrid supply systems for powering the off-grid Long Term Evolution (LTE) cellular macrocell base stations (BSs) in Bangladesh focusing the technical, economic and environmental issues. In addition, the green energy sharing technique has been incorporated via a low resistive path for optimal use of RES. The proposed system has enough potential to achieve long term sustainability and reduction of pollution rates by fulfilling the future energy demand of BS. In this work, Hybrid Optimization Model for Electric Renewables (HOMER) simulation-based feasibility analysis is used to assess the optimal system, energy production, total net present cost (NPC), cost of electricity (COE) and greenhouse gas (GHG) emission depending on different system parameters. Furthermore, the performance of the network has been evaluated in terms of throughput and energy efficiency using Matlab-based Monte Carlo simulations. Results demonstrate that the proposed hybrid renewable energy powered BSs would be a reliable and longer-lasting green solution for the telecom sector while maintaining the quality of service (QoS). Finally, an extensive comparison with other systems has also been done to justify network validity. INDEX TERMS Biomass energy, energy efficiency, energy sharing, hybrid power supply, LTE, renewableenergy-powered BSs, solar energy, sustainability. I. INTRODUCTION With the remarkable increase in the number of mobile subscribers and high-speed data demand, cellular network operators are deploying a higher number of base stations throughout the world. According to the Ericsson survey, the number of the global mobile subscriber up to the first quarter of 2019 was around 7.9 billion, with 44 million new subscribers added during this quarter, wherein LTE subscribers are 3.7 billion [1]. Currently, Bangladesh has 88 million unique subscribers and it is expected that at the The associate editor coordinating the review of this manuscript and approving it for publication was Giovanni Pau. end of 2025, this value will be 107 million [2]. Global System for Mobile Communications Association (GSMA) mentiones that at present, the number of universal BSs is above 4 million and it is nearly double from 2007 to 2012 [3]. Base stations are the premier energy consumer of mobile networks which receive 57% of the total consumed energy [4], [5]. Over the last decades, the exponential evolution of information and communication technology (ICT) has...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.