The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
The concept of oxidative stress (OS) that connects altered redox biology with various diseases was introduced 30 years ago and has generated intensive research over the past two decades. Whereas it is now commonly accepted that macromolecule oxidation in response to ROS is associated with a variety of pathologies, the emergence of NO as a key regulator of redox signalling has led to the discovery of the pathophysiological significance of reactive nitrogen species (RNS). RNS can elicit various modifications of macromolecules and lead to nitrative or nitro-OS. In order to investigate oxidative and nitro-OS in human and in live animal models, circulating biomarker assays have been developed. This article provides an overview of key biomarkers used to assess lipid peroxidation and NO/NO 2 signalling, thereby stressing the necessity to analyse several OS biomarkers in relation to the overall (aerobic) metabolism and health condition of patients. In addition, the potential interest of heart rate variability as the non-invasive integrative biomarker of OS is discussed. LINKED ARTICLESThis article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc Abbreviations 4-HNE, trans-4-hydroxy-2-nonenal; ACR, acrolein; ALE, advanced lipoxidation end-products; DNP, 2,4-dinitrophenylhydrazine; FRR, free radical reaction; HRV, heart rate variability; LO, lipid alkoxyl radical; LOO, lipid peroxyl radical; LOOH, lipid hydroperoxide; LPO, lipid peroxidation; MDA, malondialdehyde; NO + , nitrosonium ion; Nrf2, Nuclear factor (erythroid-derived 2)-like 2; OMP, oxidatively modified protein; OS, oxidative stress; PUFA, polyunsaturated fatty acids; RNS, reactive nitrogen species; TBARS, thiobarbituric acid reactive substances; UPR, unfolded protein response IntroductionOxidative stress (OS), which was first introduced as a concept in redox biology and medicine in 1985 by Helmut Sies and Enrique Cadenas (Cadenas and Sies, 1985;Sies and Cadenas, 1985), has gained increasing interest over the years to become a major field of investigation in chemistry, life sciences and medicine.This concept connects oxidative chemistry with biological stress responses. However, it has the disadvantage of concealing redox chemistry, which plays a key role in cell homeostasis and signalling and in physiology, which is, for a large part, dependent on both oxidation and reduction reactions (Frein et al., 2005). This complex field of biochemistry, which plays a key role in the regulation of a variety of enzymes involved in essential signalling pathways, is now referred to as 'redox signalling' (Ullrich and Kissner, 2006) (Figure 1 et al., 2015). This reaction gives rise to peroxynitrite (ONOO À ), which is a highly reactive nitrogen species (RNS), producing nitration and nitrosation of substrates, often proteins that play important pathophysiological roles (Ullrich and Kissner, 2006;Schulz et al., 2008;Bottari, 20...
This study used monoclonal antibody specific for 4-hydroxynonenal (HNE)-histidine to evaluate immunohistochemical distribution of HNE-protein adducts in gastric mucosa biopsies of 52 peptic ulcer patients (all positive for H. pylori) and of 20 healthy volunteers (eight positive and 12 negative for H. pylori). HNE-modified proteins were present in glandular epithelium in all subjects, both patients with duodenal peptic ulcer and healthy subjects. Hence, the presence of HNE did not appear to be related to the presence of H. pylori. However, in patients with duodenal peptic ulcer accumulation of HNE-protein adducts was frequently observed also in nuclei, while in the control group such subcellular distribution of HNE was not observed at all. This study shows physiological presence of HNE in human gastric mucosa, but also suggests its role in pathology of gastric dysfunction in duodenal peptic ulcer patients manifested by accumulation of HNE-protein adducts in particular in nuclei of gastric glandular epithelium.
Pulmonary arterial hypertension (PAH) is a rare multifactorial disease with an unfavorable prognosis. Sildenafil therapy can improve functional capacity and pulmonary hemodynamics in PAH patients. Nowadays, it is increasingly recognized that the effects of sildenafil are pleiotropic and may also involve changes of the pro-/antioxidant balance, lipid peroxidation and autonomic control. In present study we aimed to assess the effects of sildenafil on the fatty acids (FAs) status, level of hydroxynonenal (HNE) and heart rate variability (HRV) in PAH patients. Patients with PAH were characterized by an increase in HNE and changes in the FAs composition with elevation of linoleic, oleic, docosahexanoic acids in phospholipids as well as reduced HRV with sympathetic predominance. Sildenafil therapy improved exercise capacity and pulmonary hemodynamics and reduced NT-proBNP level in PAH. Antioxidant and anti-inflammatory effects of sildenafil were noted from the significant lowering of HNE level and reduction of the phopholipid derived oleic, linoleic, docosahexanoic, docosapentanoic FAs. That was also associated with some improvement of HRV on account of the activation of the neurohumoral regulatory component. Incomplete recovery of the functional metabolic disorders in PAH patients may be assumed from the persistent increase in free FAs, reduced HRV with the sympathetic predominance in the spectral structure after treatment comparing to control group. The possibilities to improve PAH treatment efficacy through mild stimulation of free radical reactions and formation of hormetic reaction in the context of improved NO signaling are discussed.
The aim of present research was to study the effects of Amaranth oil (AmO) supplementation on aerobic metabolism and heart rate variability (HRV) in type 2 diabetes mellitus patients and in athletes. Several parameters of aerobic metabolism and HRV were assessed. Supplementation with AmO caused mild pro-oxidant activity resulting in improved uptake of oxidative destruction products and modulation of catalase and SOD activity with subsequent development of an antioxidant effect. These findings were very distinct in athletes but less pronounced in diabetics. Redistribution of haemoglobin ligands in athletes indicates involvement of haemoproteins in free radical reactions during AmO supplementation. Improvement in HRV by daily consumption of AmO as observed in both study groups suggested increased production of endogenous oxygen and enhancement of the cardio-respiratory function. The advantage of activation of aerobic metabolism in OS-related disorders resulting in improved self-organization of the living system and hormetic reaction mechanisms are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.