This paper stresses the theoretical nature of constructing the optimal derivative-free iterations. We give necessary and sufficient conditions for derivative-free three-point iterations with the eighth-order of convergence. We also establish the connection of derivative-free and derivative presence three-point iterations. The use of the sufficient convergence conditions allows us to design wide class of optimal derivative-free iterations. The proposed family of iterations includes not only existing methods but also new methods with a higher order of convergence.
We show that the well-known Khattri et al. methods and Zheng et al. methods are identical. In passing, we propose a suitable calculation formula for Khattri et al. methods. We also show that the families of eighth-order derivative-free methods obtained in [8] include some existing methods, among them the above-mentioned ones as particular cases. We also give the sufficient convergence condition of these families. Numerical examples and comparison with some existing methods were made. In addition, the dynamical behavior of methods of these families is analyzed.
In this work, we first develop a new family of three-step seventh and eighth-order Newton-type iterative methods for solving systems of nonlinear equations. We also propose some different choices of parameter matrices that ensure the convergence order. The proposed family includes some known methods of special cases. The computational cost and efficiency index of our methods are discussed. Numerical experiments give to support the theoretical results.
We develop a new families of optimal eight--order methods for solving nonlinear equations. We also extend some classes of optimal methods for any suitable choice of iteration parameter. Such development and extension was made using sufficient convergence conditions given in [14]. Numerical examples are considered to check the convergence order of new families and extensions of some well-known methods.
In this paper, we used the necessary optimality condition for parameters in a two-point iterations for solving nonlinear equations. Optimal values of these parameters fully coincide with those obtained in [6] and allow us to increase the convergence order of these iterative methods. Numerical experiments and the comparison of existing robust methods are included to confirm the theoretical results and high computational efficiency. In particular, we considered a variety of real life problems from different disciplines, e.g., Kepler’s equation of motion, Planck’s radiation law problem, in order to check the applicability and effectiveness of our proposed methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.