In this paper ultrafine copper nanoparticles (CuNPs) were prepared from copper salt via chemical reduction method with sodium citrate dispersant and polyvinylalcol (PVA) capping polymer. The colloidal CuNPs were characterized by using UV-Visible spectroscopy, Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD) techniques. Our obtained results indicated that the CuNPs were produced ranging from 2 to 4 nm in diameter. The colloidal solution at 7 ppm of CuNPs exhibited a powerful antifungal activity against Corticium salmonicolor (C. Salmonicolor). Fungal killing assays showed colloid solutions containing 10 ppm of CuNPs killed entirely the cultured fungus. A highly killing activity against the fungus was also performed when the CuNPs were sprayed on pink disease-infected rubber trees. These positive results may offer a great potential to produce CuNPs-based eco-fungicide for pink disease.
Triangular silver nanoplates were prepared by using the seeding growth approach with the presence of citrate-stabilized silver seeds and a mixture of gelatin-chitosan as the protecting agent. By understanding the critical role of reaction components, the synthesis process was improved to prepare the triangular nanoplates with high yield and efficiency. Different morphologies of silver nanostructures, such as triangular nanoplates, hexagonal nanoprisms, or nanodisks, can be obtained by changing experimental parameters, including precursor AgNO 3 volume, gelatin-chitosan concentration ratios, and the pH conditions. The edge lengths of triangular silver nanoplates were successfully controlled, primarily through the addition of silver nitrate under appropriate condition. As-prepared triangular silver nanoplates were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-Vis, Fourier transform infrared spectroscopy (FT-IR), and X-Ray diffraction (XRD). Silver nanoplates had an average edge length of 65-80 nm depending on experimental conditions and exhibited a surface plasma resonance absorbance peak at 340, 450, and 700 nm. The specific interactions of gelatin and chitosan with triangular AgNPs were demonstrated by FT-IR. Based on the characterization, the growth mechanism of triangular silver nanoplates was theoretically proposed regarding the twinned crystal of the initial nanoparticle seeds and the crystal face-blocking role of the gelatin-chitosan mixture. Moreover, the antibacterial activity of triangular silver nanoplates was considerably improved in comparison with that of spherical shape when tested against Gram-positive and Gram-negative bacteria species, with 6.0 ug/mL of triangular silver nanoplates as the MBC (Minimum bactericidal concentration) for Escherichia coli and Vibrio cholera, and 8.0 ug/mL as the MBC for Staphylococcus aureus and Pseudomonas aeruginosa. The MIC (Minimum inhibitory concentration) of triangular Ag nanoplates was 4.0 ug/mL for E. coli, V. cholera, S. aureus, and P. aeruginosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.