Tuberculosis (TB) is a deadly contagious disease and a serious global health problem. It is curable but due to its lengthy treatment process, a patient is likely to leave the treatment incomplete, leading to a more lethal, drug resistant form of disease. The World Health Organization (WHO) propagates Directly Observed Therapy Short-course (DOTS) as an effective way to stop the spread of TB in communities with a high burden. But DOTS also adds a significant burden on the financial feasibility of the program. We aim to facilitate TB programs by predicting the outcome of the treatment of a particular patient at the start of treatment so that their health workers can be utilized in a targeted and cost-effective way. The problem was modeled as a classification problem, and the outcome of treatment was predicted using state-of-art implementations of 3 machine learning algorithms. 4213 patients were evaluated, out of which 64.37% completed their treatment. Results were evaluated using 4 performance measures; accuracy, precision, sensitivity, and specificity. The models offer an improvement of more than 12% accuracy over the baseline prediction. Empirical results also revealed some insights to improve TB programs. Overall, our proposed methodology will may help teams running TB programs manage their human resources more effectively, thus saving more lives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.