With rapid urbanization and life style changes, loud noise is omnipresent and has become a part of life. Indoor and outdoor environmental noise pollution have been documented as a serious health hazard with increasing adverse effects on fetus, infants, children, adolescents and adults. Noise induced hearing loss and non-auditory adverse effects due to noise pollution, are being increasingly diagnosed in all age groups including the fetus. Outdated motorized vehicles, machinery, increasing traffic, congested residential areas, crowded educational institutions and workplaces, unregulated commercial and industrial noise have become a source of noise pollution with long-term disability. Areas of noise pollution must be identified and corrective measures be taken. Toys, personal, domestic, commercial, industrial equipment should be within the safe sound intensity. Loudspeakers and vehicular horns should be banned except in emergencies. Nocturnal noise pollution must be avoided near residential areas as sleep disturbances have serious long-term health consequences. Pregnant women, fetus, newborns, infants and children are most susceptible to noise induced health hazards and should be given utmost protection. Educational institutions, workplaces, commercial and industrial areas should be regularly monitored for noise levels and protective ear muffs and plugs be used. Public be educated repeatedly regarding health hazards of noise. Traffic noise should be regulated to be within safe limits. Bus-stands, railway stations and airports should be moved away from residential areas. Houses should be sound proofed suitably. Long term studies should be conducted in pregnant women, newborn children and adults to have more data on hazards of noise pollution.
The maize database, first of its kind in India, is a central repository for cultivars i.e. hybrids and open pollinated varieties (OPVs) notified for cultivation in India since the inception of All India Coordinated Maize Improvement Project (AICMIP) in 1957. The database includes the information on cultivars developed from public as well as private breeding programmes. Besides, information on registered germplasm is also given. The database carries image gallery showcasing photographs of cobs/standing crop of the public-bred cultivars released after 1993.The database also presents information about adaptability of cultivars, average yield and disease, and insect-pest resistance along with the parental materials used in breeding programmes. Information on 31 descriptors as per Distinctivity, Uniformity and Stability (DUS) tests in respect of parental lines and their hybrids that were filed for protection under "Protection of Plant Varieties and Farmers Rights Act, 2001" (PPVFRAct, 2001) has been supplemented. In addition, the database provides contact information on developers of the notified cultivars thereby facilitating interactions among the members of maize community. The information contained within maize database can be accessed at on-line expert system called maize AGRIdaksh (www.iimr.res.in/maizeexpertsystem/www.agridaksh.iasri.res.in/maize). Information on notified cultivars (1961
Comparative study about the salt-induced oxidative stress and lipid peroxidation has been realised in primary root tissues for Tomato (Lycopersicon esculantum L.) in order to evaluate their responses to salt stress. Salinity impacts in terms of root growth, H2O2 generation, lipid peroxidation and membrane destabilisation were more pronounced in roots. Salt treatment in form of NaCl was given to the roots of the tomato plants in hydroponics culture. Root length was measured by centimetre scale, H2O2 and lipid peroxidation was confirmed by spectrophotometer. Absorbance for H2O2 estimation was recorded at 480 nm whereas for Lipid peroxidation was done at 600nm. When the tomato plants were treated with different concentrations of NaCl, it was observed that as the concentration of NaCl was increasing, there was decreased root growth resulting in reduced root length and proportionate increase in the amount of H2O2 production level with increase in the concentrations of NaCl treatment upto 300mM Concentration and Significant increase in Lipid peroxidation was observed with the increase in NaCl concentrations upto 500mM Concentration. Comparative response may be helpful in developing a better understanding of tolerance mechanisms to salt stress in Tomato.
Purpose The purpose of this paper is to evaluate hygro-thermo-mechanically induced normalized stress intensity factor (NSIF) of an edge crack symmetric angle-ply piezo laminated composite plate (PLCP) using displacement correlation method. Design/methodology/approach In the present work, the governing equations are solved through conventional finite element method combined with higher order shear deformation plate theory utilizing the micromechanical approach. Findings The effects of crack length, the thickness of the plate and piezoelectric layer, stacking sequences, fiber volume fraction, position of piezoelectric layer, change in moisture and temperature, and voltage on the NSIF are examined. The numerical results are presented in the form of a table for the better understanding and accuracy. The present outlined approach is validated with results available in the literature. These results can become a benchmark for future studies. Research limitations/implications The mathematical models theoretically have been developed by considering different parameters. The results are generated using MATLAB 2015 software developed by the authors’ side. Originality/value The fracture analysis of a single edge crack PLCP with the effect of a piezoelectric layer at the different location of cracked structures, plate thickness, and actuator voltage and hygro-thermo loading is the novelty of research for health monitoring and high-performance analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.