In this study, carbon nanofibers (CNFs) were grown by chemical vapor deposition on C-fiber textiles that had Ni and Cu catalyst deposited via electrophoretic deposition. Before the CNFs were coated with silica layer via hydrolysis of TEOS (Tetraethyl orthosilicate), the carbon nanofibers were oxidized by nitric acid. Due to oxidation, the hydroxyl group was created on the carbon nanofibers and this was used as an activation site for the SiO2. The physicochemical properties of the grown carbon nanofibers were investigated with Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), X-ray Diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The structures of SiO2-coated carbon nanofibers were characterized by XPS and TEM. The electrochemical properties and the capacitance of the materials were investigated by galvanostatic charge-discharge and cyclic voltammetry. Different types of carbon nanofibers were grown upon the deposition utilizing catalysts, with the SiO2 uniformly coated on the surface of carbon nanofibers. When used as an anode material for the Li secondary battery, the SiO2/CNFs composite had a lower capacity maintenance and a greater discharge capacity as compared to the carbon nanofibers.
In this study, Ni, Ni-Cu and Ni/Cu catalysts were deposited onto C-fiber textiles via the electrophoretic deposition method, and the growth characteristics of carbon nanofibers on the deposited catalyst/C-fiber textiles were investigated. The catalyst deposition onto C-fiber textiles was accomplished by immersing the Cfiber textiles into Ni or Ni-Cu mixed solutions, producing the substrate by post-deposition of Ni onto C-fiber textiles with pre-deposited Cu, and passing it through a gas mixture of N 2 , H 2 and C 2 H 4 at 700 o C to synthesize carbon nanofibers. For analysis of the characteristics of the synthesized carbon nanofibers and the deposition pattern of catalysts, SEM, EDS, BET, XRD, Raman and XPS analysis were conducted. It was found that the amount of catalyst deposited and the ratio of Ni deposition in the Ni-Cu mixed solution increased with an increasing voltage for electrophoretic deposition. In the case of post-deposition of Ni catalyst onto substrates with pre-deposited Cu, both bimetallic catalyst and carbon nanofibers with a high level of crystallizability were produced. Carbon nanofibers yielded with the catalyst prepared in Ni and Ni-Cu mixed solutions showed a Yshaped morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.