The PHANGS collaboration has been building a reference data set for the multiscale, multiphase study of star formation and the interstellar medium (ISM) in nearby galaxies. With the successful launch and commissioning of JWST, we can now obtain high-resolution infrared imaging to probe the youngest stellar populations and dust emission on the scales of star clusters and molecular clouds (∼5–50 pc). In Cycle 1, PHANGS is conducting an eight-band imaging survey from 2 to 21 μm of 19 nearby spiral galaxies. Optical integral field spectroscopy, CO(2–1) mapping, and UV-optical imaging for all 19 galaxies have been obtained through large programs with ALMA, VLT-MUSE, and Hubble. PHANGS–JWST enables a full inventory of star formation, accurate measurement of the mass and age of star clusters, identification of the youngest embedded stellar populations, and characterization of the physical state of small dust grains. When combined with Hubble catalogs of ∼10,000 star clusters, MUSE spectroscopic mapping of ∼20,000 H ii regions, and ∼12,000 ALMA-identified molecular clouds, it becomes possible to measure the timescales and efficiencies of the earliest phases of star formation and feedback, build an empirical model of the dependence of small dust grain properties on local ISM conditions, and test our understanding of how dust-reprocessed starlight traces star formation activity, all across a diversity of galactic environments. Here we describe the PHANGS–JWST Treasury survey, present the remarkable imaging obtained in the first few months of science operations, and provide context for the initial results presented in the first series of PHANGS–JWST publications.
A primary new capability of JWST is the ability to penetrate the dust in star-forming galaxies to identify and study the properties of young star clusters that remain embedded in dust and gas. In this Letter we combine new infrared images taken with JWST with our optical Hubble Space Telescope (HST) images of the starbursting barred (Seyfert2) spiral galaxy NGC 1365. We find that this galaxy has the richest population of massive young clusters of any known galaxy within 30 Mpc, with ∼30 star clusters that are more massive than 106 M ⊙ and younger than 10 Myr. Sixteen of these clusters are newly discovered from our JWST observations. An examination of the optical images reveals that 4 of 30 (∼13%) are so deeply embedded that they cannot be seen in the Hubble I band (A V ≳ 10 mag), and that 11 of 30 (∼37%) are missing in the HST B band, so age and mass estimates from optical measurements alone are challenging. These numbers suggest that massive clusters in NGC 1365 remain completely obscured in the visible for ∼1.3 ± 0.7 Myr and are either completely or partially obscured for ∼3.7 ± 1.1 Myr. We also use the JWST observations to gain new insights into the triggering of star cluster formation by the collision of gas and dust streamers with gas and dust in the bar. The JWST images reveal previously unknown structures (e.g., bridges and overshoot regions from stars that form in the bar) that help us better understand the orbital dynamics of barred galaxies and associated star-forming rings. Finally, we note that the excellent spatial resolution of the NIRCAM F200W filter provides a better way to separate barely resolved compact clusters from individual stars based on their sizes.
We present a comparison of theoretical predictions of dust continuum and polycyclic aromatic hydrocarbon (PAH) emission with new JWST observations in three nearby galaxies: NGC 628, NGC 1365, and NGC 7496. Our analysis focuses on a total of 1063 compact stellar clusters and 2654 stellar associations previously characterized by the Hubble Space Telescope in the three galaxies. We find that the distributions and trends in the observed PAH-focused infrared colors generally agree with theoretical expectations, and that the bulk of the observations is more aligned with models of larger, ionized PAHs. These JWST data usher in a new era of probing interstellar dust and studying how the intense radiation fields near stellar clusters and associations play a role in shaping the physical properties of PAHs.
The first JWST observations of nearby galaxies have unveiled a rich population of bubbles that trace the stellar-feedback mechanisms responsible for their creation. Studying these bubbles therefore allows us to chart the interaction between stellar feedback and the interstellar medium, and the larger galactic flows needed to regulate star formation processes globally. We present the first catalog of bubbles in NGC 628, visually identified using Mid-Infrared Instrument F770W Physics at High Angular resolution in Nearby GalaxieS (PHANGS)–JWST observations, and use them to statistically evaluate bubble characteristics. We classify 1694 structures as bubbles with radii between 6 and 552 pc. Of these, 31% contain at least one smaller bubble at their edge, indicating that previous generations of star formation have a local impact on where new stars form. On large scales, most bubbles lie near a spiral arm, and their radii increase downstream compared to upstream. Furthermore, bubbles are elongated in a similar direction to the spiral-arm ridgeline. These azimuthal trends demonstrate that star formation is intimately connected to the spiral-arm passage. Finally, the bubble size distribution follows a power law of index p = −2.2 ± 0.1, which is slightly shallower than the theoretical value by 1–3.5σ that did not include bubble mergers. The fraction of bubbles identified within the shells of larger bubbles suggests that bubble merging is a common process. Our analysis therefore allows us to quantify the number of star-forming regions that are influenced by an earlier generation, and the role feedback processes have in setting the global star formation rate. With the full PHANGS–JWST sample, we can do this for more galaxies.
A long-standing problem when deriving the physical properties of stellar populations is the degeneracy between age, reddening, and metallicity. When a single metallicity is used for all star clusters in a galaxy, this degeneracy can result in ”catastrophic” errors for old globular clusters. Typically, approximately 10 – 20 % of all clusters detected in spiral galaxies can have ages that are incorrect by a factor of ten or more. In this paper we present a pilot study for four galaxies (NGC 628, NGC 1433, NGC 1365, and NGC 3351) from the PHANGS-HST survey. We describe methods to correct the age-dating for old globular clusters, by first identifying candidates using their colors, and then reassigning ages and reddening based on a lower metallicity solution. We find that young ‘Interlopers’ can be identified from their Hα flux. CO (2-1) intensity or the presence of dust can also be used, but our tests show that they do not work as well. Improvements in the success fraction are possible at the ≈15 % level (reducing the fraction of catastrophic age-estimates from between 13 - 21 % to 3 - 8 %). A large fraction of the incorrectly age-dated globular clusters are systematically given ages around 100 Myr, polluting the younger populations as well. Incorrectly age-dated globular clusters significantly impact the observed cluster age distribution in NGC 628, which affects the physical interpretation of cluster disruption in this galaxy. For NGC 1365, we also demonstrate how to fix a second major age-dating problem, where very dusty young clusters with E(B − V) > 1.5 mag are assigned old, globular-cluster like ages. Finally, we note the discovery of a dense population of ≈300 Myr clusters around the central region of NGC 1365. and discuss how this results naturally from the dynamics in a barred galaxy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.