Recent years have witnessed an explosive growth in multimedia streaming applications over the Internet. Notably, Content Delivery Networks (CDN) and Peer-to-Peer (P2P) networks have emerged as two effective paradigms for delivering multimedia contents over the Internet. One salient feature shared between these two networks is the inherent support for path diversity streaming where a receiver receives multiple streams simultaneously on different network paths as a result of having multiple senders. In this paper, we propose a network coding framework for efficient video streaming in CDNs and P2P networks in which, multiple servers/peers are employed to simultaneously stream a video to a single receiver. We show that network coding techniques can (a) eliminate the need for tight synchronization between the senders, (b) be integrated easily with TCP, and (c)
Due to high costs and power consumptions, fully digital baseband precoding schemes are usually prohibitive in millimeter-wave massive MIMO systems. Therefore, hybrid precoding strategies become promising solutions. In this paper, we present a novel real-time yet high-performance precoding strategy. Specifically, the eigenvectors corresponding to the larger eigenvalues of the right unitary matrix after singular value decomposition on an array response matrix are used to abstract the angle information of an analog precoding matrix. As the obtained eigenvectors correspond to the larger singular values, the major phase information of channels is captured. In this way, the iterative search process for obtaining the analog precoding vectors is avoided, and thus the hybrid precoding can be realized in parallel. To further improve its spectral-efficiency, we enlarge the resultant vector set by involving more relevant vectors in terms of their correlation values with the unconstrained optimal precoder, and a hybrid precoder is thus produced by using the vector set. The simulation results show that our proposed scheme achieves near the same performance as the orthogonal matching pursuit does, whereas it costs much fewer complexities than the OMP, and thus can be realized in parallel. INDEX TERMS Millimeter wave communication, MIMO, wireless communication, hybrid precoding. I. INTRODUCTION
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.