Somatic mutations drive cancer development and may contribute to ageing and other diseases. Yet, the di culty of detecting mutations present only in single cells or small clones has limited our knowledge of somatic mutagenesis to a minority of tissues. To overcome these limitations, we introduce nanorate sequencing (NanoSeq), a new duplex sequencing protocol with error rates <5 errors per billion base pairs in single DNA molecules from cell populations. The version of the protocol described here uses clean genome fragmentation with a restriction enzyme to prevent end-repair-associated errors and ddBTPs/dATPs during A-tailing to prevent nick extension. Both changes reduce the error rate of standard duplex sequencing protocols by preventing the xation of DNA damage into both strands of DNA molecules during library preparation. We also use qPCR quanti cation of the library prior to ampli cation to optimise the complexity of the sequencing library given the desired sequencing coverage, maximising duplex coverage. The sample preparation protocol takes between 1 and 2 days, depending on the number of samples processed. The bioinformatic protocol is described in:
Parkinson’s disease dementia is neuropathologically characterized by aggregates of α-synuclein (Lewy bodies) in limbic and neocortical areas of the brain with additional involvement of Alzheimer’s disease-type pathology. Whilst immune activation is well-described in Parkinson’s disease (PD), how it links to protein aggregation and its role in PD dementia has not been explored. We hypothesized that neuroinflammatory processes are a critical contributor to the pathology of PDD. To address this hypothesis, we examined 7 brain regions at postmortem from 17 PD patients with no dementia (PDND), 11 patients with PD dementia (PDD), and 14 age and sex-matched neurologically healthy controls. Digital quantification after immunohistochemical staining showed a significant increase in the severity of α-synuclein pathology in the hippocampus, entorhinal and occipitotemporal cortex of PDD compared to PDND cases. In contrast, there was no difference in either tau or amyloid-β pathology between the groups in any of the examined regions. Importantly, we found an increase in activated microglia in the amygdala of demented PD brains compared to controls which correlated significantly with the extent of α-synuclein pathology in this region. Significant infiltration of CD4+ T lymphocytes into the brain parenchyma was commonly observed in PDND and PDD cases compared to controls, in both the substantia nigra and the amygdala. Amongst PDND/PDD cases, CD4+ T cell counts in the amygdala correlated with activated microglia, α-synuclein and tau pathology. Upregulation of the pro-inflammatory cytokine interleukin 1β was also evident in the substantia nigra as well as the frontal cortex in PDND/PDD versus controls with a concomitant upregulation in Toll-like receptor 4 (TLR4) in these regions, as well as the amygdala. The evidence presented in this study show an increased immune response in limbic and cortical brain regions, including increased microglial activation, infiltration of T lymphocytes, upregulation of pro-inflammatory cytokines and TLR gene expression, which has not been previously reported in the postmortem PDD brain.
ObjectiveWe tested whether in vivo neuroinflammation relates to the distinctive distributions of pathology in Alzheimer disease (AD) and progressive supranuclear palsy (PSP).MethodsSixteen patients with symptomatic AD (including amnestic mild cognitive impairment with amyloid-positive PET scan), 16 patients with PSP–Richardson syndrome, and 13 age-, sex-, and education-matched healthy controls were included in this case-control study. Participants underwent [11C]PK11195 PET scanning, which was used as an in vivo index of neuroinflammation.Results[11C]PK11195 binding in the medial temporal lobe and occipital, temporal, and parietal cortices was increased in patients with AD, relative both to patients with PSP and to controls. Compared to controls, patients with PSP showed elevated [11C]PK11195 binding in the thalamus, putamen, and pallidum. [11C]PK11195 binding in the cuneus/precuneus correlated with episodic memory impairment in AD, while [11C]PK11195 binding in the pallidum, midbrain, and pons correlated with disease severity in PSP.ConclusionsTogether, our results suggest that neuroinflammation has an important pathogenic role in the 2 very different human neurodegenerative disorders of AD and PSP. The increase and distribution of microglial activation suggest that immunotherapeutic strategies may be useful in slowing the progression of both diseases.
Case 1 demonstrated multi‐territorial cerebral vascular injury with associated cerebral thrombotic microangiopathy; case 2 demonstrated a brainstem encephalitis centred on the dorsal medulla and a subacute regional infarct involving the cerebellar cortex. Viral RNA was not detected in post‐mortem brain tissue, suggesting that these pathologies may not be a direct consequence of viral neuroinvasion and may represent para‐infectious phenomena, relating to the systemic hyperinflammatory and hypercoagulable syndromes that both patients suffered.
et al. (2021) Genetic determinants of survival in progressive supranuclear palsy: a genome-wide association study. The Lancet Neurology, 20 (2). pp. 107-116.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.