Expression of genes found in the brains of autism, bipolar, and schizophrenia patients identified as overlapping. The overlap is a state in which the values of genes are similar. This paper aims to determine the best performance of support vector machines algorithm in classifying autism, bipolar, and schizophrenia based on the expression of genes using genome-wide association studies data. Using three support vector machine kernels, this study evaluates the performance of gaussian, laplacian, and sigmoid for genome-wide association studies datasets. The datasets were obtained from Psychiatric Genomics Consortium publications, where 660 data were taken with each disorder consisting of 220 data. This study proposes an optimal kernel for one-against-one and one-against-all multiclass support vector machine, and the performance is evaluated using accuracy. The study results show that the Gaussian kernel has the best accuracy performance compared to other support vector machines kernels in classifying genome-wide association studies data of autism, bipolar, and schizophrenia as early diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.