Chilean red chili peppers contaminated with aflatoxins were reported in a previous study. If the development of gallbladder cancer (GBC) in Chile is associated with a high level of consumption of aflatoxin-contaminated red chili peppers, such peppers from other countries having a high GBC incidence rate may also be contaminated with aflatoxins. We aimed to determine whether this might be the case for red chili peppers from Bolivia and Peru. A total of 7 samples (3 from Bolivia, 4 from Peru) and 3 controls (2 from China, 1 from Japan) were evaluated. Aflatoxins were extracted with acetonitrile:water (9:1, v/v) and eluted through an immuno-affinity column. The concentrations of aflatoxins B1, B2, G1, and G2 were measured using high-performance liquid chromatography (HPLC), and then the detected aflatoxins were identified using HPLC-mass spectrometry. In some but not all of the samples from Bolivia and Peru, aflatoxin B1 or aflatoxins B1 and B2 were detected. In particular, aflatoxin B1 or total aflatoxin concentrations in a Bolivian samples were above the maximum levels for aflatoxins in spices proposed by the European Commission. Red chili peppers from Bolivia and Peru consumed by populations having high GBC incidence rates would appear to be contaminated with aflatoxins. These data suggest the possibility that a high level of consumption of aflatoxin-contaminated red chili peppers is related to the development of GBC, and the association between the two should be confirmed by a case-control study.
These genetic variants were not related to an increased risk of GBC in Chilean women. Other polymorphisms, such as red-chili-pepper-related polymorphisms, may contribute to the development of GBC in Chilean women.
Our data suggest that intestinal metaplasia in Barrett's oesophagus is an epiphenomenon rather than a preneoplastic condition, and that CDX2-positive cardiac-type epithelium is highly associated with minute Barrett's tumour. Further prospective studies are needed to evaluate the risk of malignancy of cardiac-type epithelium with regard to sub-morphological intestinalization.
Systemic inflammatory responses in patients undergoing extracorporeal membrane oxygenation (ECMO) contribute significantly to ECMO-associated morbidity and mortality. In recent years, the number of type 2 diabetes mellitus patients has increased, and the number of these patients undergoing ECMO has also increased. Type 2 diabetes mellitus is a high-risk factor for complications during ECMO. We studied the effects of ECMO on inflammatory response in a diabetic rat ECMO model. Twenty-eight rats were divided into 4 groups: normal SHAM group (normal rats: n = 7), diabetic SHAM group (diabetic rats: n = 7), normal ECMO group (normal rats: n = 7), and diabetic ECMO group (diabetic rats: n = 7). We measured the plasma levels of cytokines, tumor necrosis factor-α, and interleukin-6. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), blood urea nitrogen (BUN), creatinine (Cr), and liver-type fatty acid binding protein (L-FABP) were examined in the rat cardiopulmonary bypass model to ascertain organ damage. In addition, the lung wet-to-dry weight (W/D) ratio was measured as an index of pulmonary tissue edema. A pathologic evaluation of kidneys was conducted by hematoxylin-eosin (HE) and periodic-acid-methenamine-silver (PAM) staining. In the diabetic ECMO group, levels of cytokines, AST, ALT, LDH, and L-FABP increased significantly, reaching a maximum at the end of ECMO in comparison with other groups (p < 0.05). In addition, hematoxylin-eosin and periodic acid-methenamine-silver staining of renal tissues showed marked injury in the ECMO group (normal ECMO and diabetic ECMO groups). Furthermore, when the normal ECMO and diabetic ECMO groups were compared, severe organ injury was seen in the diabetic ECMO group. There was remarkable organ injury in the diabetic ECMO group. These data demonstrate that diabetes enhances proinflammatory cytokine release, renal damage, and pulmonary edema during ECMO in an animal model.
Background: Nonspecific vaginitis, also known as Bacterial vaginosis, unlike genital candidiasis and trichomoniasis, is caused by microbiome breakdown. Döderlein's bacillus are gram-positive bacillus that form a microbiome, reproduce in the female vagina after gaining sexual maturity, secrete lactic acid, and prevent the growth of other vaginitis-causing bacteria. Clue cell are squamous epithelial cells with Gardnerella sp. attached to their cell surface. The presence of clue cell is one of the diagnostic criteria for nonspecific vaginitis. Additionally, although macrophages are reported to protect against candidal vaginitis, there are no reports of studies examining the association between macrophages and clue cell. Materials and Methods: After re-staining 300 class I specimens by cervical cancer screening with Papanicolaou staining, the appearance of Döderlein's bacillus, macrophages, and clue cell was observed. Result: Age group and appearance of Döderlein's bacillus were negatively correlated. The rate of appearance of macrophages was positively correlated with the age group. In people aged 50 years or more, the appearance rate of clue cells was significantly lower in the macrophage appearance group than that in the non-appearance group. Conclusion: This study suggested that macrophages, and not Döderlein's bacillus, may play an important role in defense against nonspecific vaginitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.