To investigate the lignification process and its physiological significance under drought-stressed conditions, the changes in enzymes responsible for lignification and the related physiological parameters were determined in white clover (Trifolium repens L.) leaves during 28 d of water deficit treatment. Water deficit gradually decreased leaf water potential (Psiw) to -2.33 MPa at day 28. For the first 14 d of water deficit, ascorbate peroxidase and phenylalanine ammonia-lyase were highly activated. Neither a change in the parameters symptomatic of oxidative stress nor growth inhibition was observed. The reduction of leaf biomass occurred from 21 d of water deficit treatment when Psiw was -2.27 MPa or less, and was concomitant with the increase of lipid peroxidation and lignin content. As Psiw decreased below -1.67 MPa from 14 d of water deficit, the enhanced activation of guaiacol peroxidase, coniferyl alcohol peroxidase, syringaldazine peroxidase, and benzidine peroxidase was involved in lignification rather than in protection of plant tissues against the oxidative damage. The data indicate that a high activation of lignifying enzymes during terminal stress may be a drought stress-induced injurious symptom, which leads to reduced forage growth and digestibility.
Several rhizobacteria play a vital role in plant protection, plant growth promotion and the improvement of soil health. In this study, we have isolated a strain of Lysobacter antibioticus HS124 from rhizosphere and demonstrate its antifungal activity against various pathogens including Phytophthora capsici, a destructive pathogen of pepper plants. L. antibioticus HS124 produced lytic enzymes such as chitinase, beta-1,3-glucanase, lipase, protease, and an antibiotic compound. This antibiotic compound was purified by diaion HP-20, silica gel, sephadex LH-20 column chromatography and high performance liquid chromatography. The purified compound was identified as 4-hydroxyphenylacetic acid by gas chromatography-electron ionization (GC-EI) and gas chromatography-chemical ionization (GC-CI) mass spectrometry. This antibiotic exhibited destructive activity toward P. capsici hyphae. In vivo experiments utilizing green house grown pepper plants demonstrated the protective effect of L. antibioticus HS124 against P. capsici. The growth of pepper plants treated with L. antibioticus culture was enhanced, resulting in greater protection from fungal disease. Optimum growth and protection was found when cultures were grown in presence of Fe(III). Additionally, the activities of pathogenesis-related proteins such as chitinase and beta-1,3-glucanase decreased in roots, but increased in leaves with time after treatment compared to controls. Our results demonstrate L. antibioticus HS124 as a promising candidate for biocontrol of P. capsici in pepper plants.
The aim of this study was to characterize the roles of sulphur (S) nutrition in modulating the responses to iron (Fe) deficiency in the photosynthetic organelles of oilseed rape. Eight-week-old plants grown hydroponically were fed with S-sufficient or S-deprived solution with or without Fe(III)-EDTA. Responses to four S and Fe combined treatments were analysed after 5 and 10 days. Leaf chlorosis was generated by either S- or Fe-deprivation, with a decrease in chlorophyll and carotenoid content. These negative effects were more severe in the absence of S. The expression of Fe²⁺ transporter (IRT1) and Fe(III) chelate reductase (FRO1) gene was induced for the first 5 days and decreased after 10 days in the S-deprived roots, but largely improved by S supply even in the absence of Fe. Lack of ferric chelate reducing activity in the Fe-deprived roots in the absence of S was largely improved by S supply. The activity of photosynthesis, RuBisCO and sucrose synthase was closely related to S status in leaves. Electron microscopic observation showed that the Fe-deficiency in the absence of S greatly resulted in a severe disorganisation of thylakoid lamellae with loss of grana. However, these impacts of Fe-deficiency were largely restored in the presence of S. The present results indicate that S nutrition has significant role in ameliorating the damages in photosynthetic apparatus caused by Fe-deficiency.
The kinetics of protein incorporation from newly-absorbed nitrogen (N, de novo protein synthesis) was estimated by 15N tracing in 18-week-old white clover plants (Trifolium repens L. cv. Regal) during 7 d of water-deficit treatment. The physiological relationship between kinetics and accumulation of proline and ammonia in response to the change in leaf-water parameters was also assessed. All leaf-water parameters measured decreased gradually under water deficit. Leaf and root dry mass was not significantly affected during the first 3 d when decreases in leaf-water parameters were substantial. However, metabolic parameters such as total N, proline and ammonia were significantly affected within 1 d of commencement of water-deficit treatment. Water-deficit treatment significantly increased the proline and NH3–NH4+ concentrations in both leaves and roots. There was a marked reduction in the amount of N incorporated into the protein fraction from the newly absorbed N (NANP) in water-deficit stressed plants, particularly in leaf tissue. This reduction in NANP was strongly associated with an increased concentration of NH3–NH4+ in roots (P≤0.05) and proline (P≤0.01) in leaves and roots. These results suggest that proline accumulation may be a sensitive biochemical indicator of plant water status and of the dynamics of de novo protein synthesis in response to stress severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.