This work illustrates the potential of dark-field X-ray microscopy (DFXM), a 3D imaging technique of nanostructures, in characterizing novel epitaxial structures of gallium nitride (GaN) on top of GaN/AlN/Si/SiO2 nano-pillars for optoelectronic applications. The nano-pillars are intended to allow independent GaN nanostructures to coalesce into a highly oriented film due to the SiO2 layer becoming soft at the GaN growth temperature. DFXM is demonstrated on different types of samples at the nanoscale and the results show that extremely well oriented lines of GaN (standard deviation of 0.04°) as well as highly oriented material for zones up to 10 × 10 µm2 in area are achieved with this growth approach. At a macroscale, high-intensity X-ray diffraction is used to show that the coalescence of GaN pyramids causes misorientation of the silicon in the nano-pillars, implying that the growth occurs as intended (i.e. that pillars rotate during coalescence). These two diffraction methods demonstrate the great promise of this growth approach for micro-displays and micro-LEDs, which require small islands of high-quality GaN material, and offer a new way to enrich the fundamental understanding of optoelectronically relevant materials at the highest spatial resolution.
In this paper, we report the use of three pendeo-epitaxy growth approaches as a way of reducing the threading dislocation density (TDD) of 20 × 20 μm2 GaN platelets to be used for the development of micro light-emitting diodes (μLEDs). The method relies on the coalescence of GaN crystallites grown on top of a network of deformable pillars etched into a silicon-on-insulator substrate. Our approach takes advantage of the creeping properties of SiO2 at the usual GaN epitaxial growth temperature, allowing the GaN crystallites to align and reduce the grain boundary dislocations. Furthermore, this bottom-up approach allows to get rid of the dry plasma etching step for μLEDs fabrication, which highly deteriorates sidewalls, reducing the efficiency of future displays. By optimizing the growth conditions and inducing asymmetric nucleation, a TDD of 2.5 × 108 cm−2 has been achieved on the GaN platelets, while keeping a smooth surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.