Hebb proposed that neuronal cell assemblies are critical for effective perception, cognition, and action. However, evidence for brain mechanisms that coordinate multiple coactive assemblies remains lacking. Neuronal oscillations have been suggested as one possible mechanism for cell assembly coordination. Prior studies have shown that spike timing depends upon local field potential (LFP) phase proximal to the cell body, but few studies have examined the dependence of spiking on distal LFP phases in other brain areas far from the neuron or the influence of LFP-LFP phase coupling between distal areas on spiking. We investigated these interactions by recording LFPs and single-unit activity using multiple microelectrode arrays in several brain areas and then used a unique probabilistic multivariate phase distribution to model the dependence of spike timing on the full pattern of proximal LFP phases, distal LFP phases, and LFP-LFP phase coupling between electrodes. Here we show that spiking activity in single neurons and neuronal ensembles depends on dynamic patterns of oscillatory phase coupling between multiple brain areas, in addition to the effects of proximal LFP phase. Neurons that prefer similar patterns of phase coupling exhibit similar changes in spike rates, whereas neurons with different preferences show divergent responses, providing a basic mechanism to bind different neurons together into coordinated cell assemblies. Surprisingly, phasecoupling-based rate correlations are independent of interneuron distance. Phase-coupling preferences correlate with behavior and neural function and remain stable over multiple days. These findings suggest that neuronal oscillations enable selective and dynamic control of distributed functional cell assemblies.neuronal oscillations | neuronal ensembles | spike timing | local field potentials | brain rhythms S ignificant progress has been made in understanding the dynamics and response properties of single nerve cells (1, 2) and how they interconnect to form cortical microcircuits (3, 4). More than 60 y ago, however, Donald Hebb hypothesized that the fundamental unit of brain operation is not the single neuron but rather the cell assembly-an anatomically dispersed but functionally integrated ensemble of neurons (5). The individual neurons that compose an assembly may reside in widely separated brain areas but act as a single functional unit through coordinated network activity. Dynamic interactions between multiple assemblies may then give rise to the large-scale functional networks found in mammalian brains (6-8). Despite the theoretical appeal of Hebb's idea (9) and growing empirical evidence of assemblies (10-12), it remains unclear how diverse groups of neurons spanning several cortical regions transiently coordinate their activity to form cell assemblies or how multiple coactive assemblies regulate their interactions to form larger functional networks.Brain rhythms may play a key role in coordinating neuronal ensembles (13-15), with a dynamic hierarchy of neuronal osc...
Thalamic relay cells transmit information from retina to cortex by firing either rapid bursts or tonic trains of spikes. Bursts occur when the membrane voltage is low, as during sleep, because they depend on channels that cannot respond to excitatory input unless they are primed by strong hyperpolarization. Cells fire tonically when depolarized, as during waking. Thus, mode of firing is usually associated with behavioral state. Growing evidence, however, suggests that sensory processing involves both burst and tonic spikes. To ask if visually evoked synaptic responses induce each type of firing, we recorded intracellular responses to natural movies from relay cells and developed methods to map the receptive fields of the excitation and inhibition that the images evoked. In addition to tonic spikes, the movies routinely elicited lasting inhibition from the center of the receptive field that permitted bursts to fire. Therefore, naturally evoked patterns of synaptic input engage dual modes of firing.
Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs) and thalamic outputs (spikes) and then analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz), is encoded by average firing rate with respect to the stimulus and carries information about local changes in the visual field over time. The other operates in the gamma frequency band (40–80 Hz) and is encoded by spike timing relative to retinal oscillations. At times, the second channel conveyed even more information than the first. Because retinal oscillations involve extensive networks of ganglion cells, it is likely that the second channel transmits information about global features of the visual scene.
Neuronal oscillations appear throughout the nervous system, in structures as diverse as the cerebral cortex, hippocampus, subcortical nuclei and sense organs. Whether neural rhythms contribute to normal function, are merely epiphenomena, or even interfere with physiological processing are topics of vigorous debate. Sensory pathways are ideal for investigation of oscillatory activity because their inputs can be defined. Thus, we will focus on sensory systems as we ask how neural oscillations arise and how they might encode information about the stimulus. We will highlight recent work in the early visual pathway that shows how oscillations can multiplex different types of signals to increase the amount of information that spike trains encode and transmit. Last, we will describe oscillation-based models of visual processing and explore how they might guide further research.
Coupled oscillators are prevalent throughout the physical world. Dynamical system formulations of weakly coupled oscillator systems have proven effective at capturing the properties of real-world systems. However, these formulations usually deal with the 'forward problem': simulating a system from known coupling parameters. Here we provide a solution to the 'inverse problem': determining the coupling parameters from measurements. Starting from the dynamic equations of a system of coupled phase oscillators, given by a nonlinear Langevin equation, we derive the corresponding equilibrium distribution. This formulation leads us to the maximum entropy distribution that captures pair-wise phase relationships. To solve the inverse problem for this distribution, we derive a closed form solution for estimating the phase coupling parameters from observed phase statistics. Through simulations, we show that the algorithm performs well in high dimensions (d=100) and in cases with limited data (as few as 100 samples per dimension). Because the distribution serves as the unique maximum entropy solution for pairwise phase statistics, the distribution and estimation technique can be broadly applied to phase coupling estimation in any system of phase oscillators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.