Ereignisdiskrete Simulationsmodelle im betriebsbegleitenden Einsatz der Produktion werden genutzt, um die Ausbringungsmenge oder die benötigten Komponenten innerhalb eines bestimmten Zeitraums vorherzusagen. Für valide Simulationsergebnisse muss die Simulation die Realität ausreichend genau abbilden. Das vorgestellte System (MWS4SimPar) nutzt einen datengesteuerten Ansatz zur Erkennung von Abweichungen zwischen Simulation und realem System sowie ein Wissensmanagement, um die Abweichungen anzupassen.
Discrete-event simulation models are used in a production environment to predict the output quantity or the required components within a certain period. For this purpose, the simulation must represent the real system with sufficiently accuracy to obtain valid results. The presented system (MWS4SimPar) uses a data-driven approach to detect deviations between simulation and real system and a knowledge management system to adjust the deviations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.