The largest energy consumer in the cell is the ribosome biogenesis whose aberrancy elicits various diseases in humans. It has been recently revealed that p53 induction, along with cell cycle arrest, is related with abnormal ribosome biogenesis, but the exact mechanism still remains unknown. In this study, we have found that aberrant ribosome biogenesis activates two parallel cellular pathways, c-Myc and ASK1/p38, which result in p53 induction and G1 arrest. The c-Myc stabilizes p53 by rpL11-mediated HDM2 inhibition, and ASK1/p38 activates p53 by phosphorylation on serine 15 and 33. Our studies demonstrate the relationship between these two pathways and p53 induction. The changes caused by impaired ribosomal stress, such as p53 induction and G1 arrest, were completely disappeared by inhibition of either pathway. These findings suggest a monitoring mechanism of c-Myc and ASK1/p38 against abnormal ribosome biogenesis through controlling the stability and activity of p53 protein.
The opportunistic human fungal pathogen Candida albicans has morphogenesis as a virulence factor. The morphogenesis of C. albicans is closely related to pathogenicity. Ras1 in C. albicans is an important switch in the MAPK pathway for morphogenesis. The MAPK pathway is important for the virulence, such as cell growth, morphogenesis, and biofilm formation. Ume6 is a well-known transcriptional factor for hyphal-specific genes. Despite numerous studies, as a recent issue, it is necessary to develop a new drug that uses a different pathway mechanism to inhibit resistant C. albicans strains caused by chronic prescription of azole or echinocandin drugs, which are mainly used. Here, we show that the small carbazole derivatives attenuated the pathogenicity of C. albicans through inhibition of the Ras1/MAPK pathway. We found that the small molecules inhibit morphogenesis through repressing protein and RNA levels in Ras/MAPK related genes including UME6 and NRG1 . Furthermore, we found the antifungal effect of the small molecules in vivo using a candidiasis murine model. We anticipate our findings are that the small molecules are the promising compounds for the development of new antifungal agents for the treatment of systemic candidiasis and possibly for other fungal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.