Cell migration and angiogenesis are key steps in tumor metastasis. However, the mechanism of migration regulated by vascular endothelial growth factor (VEGF), a potent regulator of angiogenesis, is not completely understood. This study examined the relationship between VEGF and migration, along with the mechanism involved in the VEGF-regulated migration of human gastric cancer cells. The level of cell migration was increased by recombinant human (rh)VEGF-165 in the VEGF receptor-2-expressing SNU-601 cells. Interleukin (IL)-18 is associated with the malignant progression of tumors. Accordingly, this study examined the effect of IL-18 on the migration of cancer cells in order to identify the factors involved in VEGF-enhanced migration. Inhibiting IL-18 markedly reduced the level of VEGF-enhanced migration, and IL-18 increased cell migration directly through filamentous-actin polymerization and tensin downregulation. It was confirmed that rhVEGF-165 increased IL-18 production significantly. An antioxidant and an extracellular signal-regulated kinase (ERK)1/2-specific inhibitor blocked rhVEGF-165-enhanced IL-18 production. Accordingly, rhVEGF-165 increased the generation of region of interest (ROI) and activated the ERK1/2 pathway. These results suggest that rhVEGF-165 enhances IL-18 production via the generation of ROI and ERK1/2 phosphorylation, which results in the increased migration of gastric cancer cells.
ING1b is a tumor suppressor that affects transcription, cell cycle control and apoptosis. ING1b is deregulated in disease, and its activity is closely linked to that of p53. In addition to regulating protein-coding genes, we found that ING1b also influences the expression of large intergenic non-coding RNAs (lincRNAs). In particular, lincRNA-p21 was significantly induced after DNA-damage stress or by ING1b overexpression. Furthermore, lincRNA-p21 expression in response to DNA damage was significantly attenuated in cells lacking ING1b. LincRNA-p21 is also a target of p53 and can trigger apoptosis in mouse cell models. We found that this function of lincRNA-p21 is conserved in human cell models. Moreover, ING1b and p53 could function independently to influence lincRNA-p21 expression. However, their effects become more additive under conditions of stress. In particular, ING1b regulates lincRNA-p21 levels by binding to its promoter and is required for induction of lincRNA-p21 by p53. The ability of ING1b to cause apoptosis is also impaired in the absence of lincRNA-p21. Surprisingly, deletion of the ING1b plant homeodomain, which allows it to bind histones and regulate chromatin structure, did not alter regulation of lincRNA-p21. Our findings suggest that ING1b induces lincRNA-p21 expression independently of histone 3 lysine 4 trimethylation mark recognition and that lincRNA-p21 functions downstream of ING1b. Thus, regulation at the level of lincRNA-p21 may represent the point at which ING1b and p53 pathways converge to induce apoptosis under specific stress conditions.
The largest energy consumer in the cell is the ribosome biogenesis whose aberrancy elicits various diseases in humans. It has been recently revealed that p53 induction, along with cell cycle arrest, is related with abnormal ribosome biogenesis, but the exact mechanism still remains unknown. In this study, we have found that aberrant ribosome biogenesis activates two parallel cellular pathways, c-Myc and ASK1/p38, which result in p53 induction and G1 arrest. The c-Myc stabilizes p53 by rpL11-mediated HDM2 inhibition, and ASK1/p38 activates p53 by phosphorylation on serine 15 and 33. Our studies demonstrate the relationship between these two pathways and p53 induction. The changes caused by impaired ribosomal stress, such as p53 induction and G1 arrest, were completely disappeared by inhibition of either pathway. These findings suggest a monitoring mechanism of c-Myc and ASK1/p38 against abnormal ribosome biogenesis through controlling the stability and activity of p53 protein.
We found that overweight and mild obesity significantly lowered the risk of depression in elderly adults. These findings suggest that mild increases in BMI beyond the normal range may be a protective factor for depression in elderly Korean adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.