An in situ x-ray reflectivity study of the dynamic evolution of a growing interface was carried out for gold sputter-deposited onto a polished silicon substrate. X-ray reflectivity data were recorded during growth for thicknesses of the gold film ranging from 50 to 3500 A. A progressive kinetic roughening of the gold-vacuum interface was observed and the time-dependent interfacial width exhibits a power-law behavior. Aided by scanning-tunneling-microscopy measurements the scaling exponents were determined and compared with theoretical studies.
Platelet microparticles (PMP) are submicroscopic membrane vesicles released by platelets during activation. Flow cytometry is the most widely used method for quantifying PMP, but the optimization of the technical method has not yet been fully evaluated. This study was designed to assess the pre-analytical variables including blood sampling conditions, and to evaluate the analytical variations including effect of the platelet-specific antibodies and quantitative beads, precision, linearity and accuracy in comparison with beta-thromboglobulin, which is one of the platelet activation markers. Numbers of PMP collected into citrate-theophylline-adenosine-dipyridamole (CTAD) tubes were increased with time, but to a lesser extent than when collected into sodium citrate tubes. The precision of the PMP assay was relatively high. Excellent linear correlation was observed for dilution linearity. Regarding the platelet-specific antibodies used, anti-CD41a-labeled samples resulted in higher PMP levels than those labeled with anti-CD61 and anti-CD42a. There was no significant difference of PMP counts according to the quantitative beads. The PMP assay is well correlated with beta-thromboglobulin levels. Our findings suggest that blood samples for the PMP assay should be collected in a CTAD tube and delayed measurement is not allowed to avoid artefactual platelet activation. The PMP assay can be used successfully as a useful marker of the detection of in vivo platelet activation, provided that pre-analytical and technical points are optimally taken into consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.