We report a simple triggering mechanism that greatly enhances and stabilizes supercontinuum generation by using an extremely weak cw light (~200,000 times weaker than the pump light). Such an active manipulation scheme can be enabled by a wide range of input conditions and circumvents complex techniques such as precise time delay tuning and dedicated feedback control. It thus offers a handy and versatile approach to control and optimize supercontinuum generation, expanding its range of applications, including ultrafast all-optical signal processing, spectroscopy, and imaging. The utility of the present technique for improving signal integrity in chirped pump optical parametric amplification is also demonstrated.
We demonstrated a fully fiber-integrated widely tunable picosecond optical parametric oscillator based on highly nonlinear fiber. The ring cavity with a 50 m highly nonlinear fiber was synchronously pumped with a picosecond mode-locked fiber laser. The tuning range was from 1413 to 1543 nm and from 1573 to 1695 nm, which was as wide as 250 nm. A high-quality pulse was generated with a pulse width narrower than that of the pump.
We report the first Fourier domain modelocked (FDML) laser constructed using optical parametric amplifier (OPA) in conjunction with an erbium-doped fiber amplifier (EDFA), centered at approximately 1555 nm, to the best of our knowledge. We utilize a one-pump OPA and a C-band EDFA in serial configuration with a tunable Fabry-Perot interferometer to generate a hybrid FDML spectrum. Results demonstrate a substantially better spectral shape, output power and stability than individual configurations, with decreased sensitivity to polarization changes. We believe this technique has the potential to enable several amplifiers to complement individual deficiencies resulting in improved spectral shapes and power generation for imaging applications such as optical coherence tomography (OCT).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.