Mutualists and antagonists are known to respond to similar floral cues, and may thus cause opposing selection on floral traits. However, we lack a quantitative understanding of their independent and interactive effects. In a population of the orchid Gymnadenia conopsea, we manipulated the intensity of pollination and herbivory in a factorial design to examine whether both interactions influence selection on flowering phenology, floral display, and morphology. Supplemental hand-pollination increased female fitness by 31% and one-quarter of all plants were damaged by herbivores. Both interactions contributed to selection. Pollinators mediated selection for later flowering and herbivores for earlier flowering, while both selected for longer spurs. The strength of selection was similar for both agents, and their effects were additive. As a consequence, there was no. net selection on phenology, whereas selection on spur length was strong. The experimental results demonstrate that both pollinators and herbivores can markedly influence the strength of selection on flowering phenology and floral morphology, and cause both conflicting and reinforcing selection. They also indicate that the direction of selection on phenology will vary with the relative intensity of the mutualistic and antagonistic interaction, potentially resulting in both temporal and among-population variation in optimal flowering time.
This study demonstrates that epigenetic variation alone can cause heritable variation in, and thus potentially microevolution of, plant responses to defence hormones. This suggests that part of the variation of plant defences observed in natural populations may be due to underlying epigenetic, rather than entirely genetic, variation.
Associational effects of plant genotype or species on plant biotic interactions are common, not least for disease spread, but associational effects of plant sex on interactions have largely been ignored. Sex in dioecious plants can affect biotic interactions with herbivores and pollinators; however, its effects on plant–pathogen interactions are understudied and associational effects are unknown. In a replicated field experiment, we assessed Melampsora spp. leaf rust infection in monosexual and mixed sex plots of dioecious Salix viminalis L. to determine whether plant sex has either direct or associational effects on infection severity. We found no differences in Melampsora spp. infection severity among sexual monocultures and mixtures in our field experiment. However, female plants were overall more severely infected. In addition, we surveyed previous studies of infection in S. viminalis clones and reevaluated the studies after we assigned sex to the clones. We found that females were generally more severely infected, as in our field study. Similarly, in a survey of studies on sex‐biased infection in dioecious plants, we found more female‐biased infections in plant–pathogen pairs. We conclude that there was no evidence for associational plant sex effects of neighboring conspecifics for either females or males on infection severity. Instead, plant sex effects on infection act at an individual plant level. Our findings also suggest that female plants may in general be more severely affected by fungal pathogens than males.
Abstract. Plant sex effects on herbivores are well studied, but little is known about these effects on predators and predator-herbivore dynamics. Here we take a holistic approach to study, simultaneously, plant sex effects on herbivore and predator preference and performance, as well as population densities and predation pressure in the field. For dioecious Salix cinerea (grey willow) we found that male plants represented higher host plant quality than females for an omnivorous predator (Anthocoris nemorum, common flower bug), while host plant quality for its herbivorous prey (Phratora vulgatissima, blue willow beetle) was not sex-biased. The herbivore strongly preferred the host plant sex (female) that was suboptimal for the predator, which in turn followed its prey to female plants, leading to plant-sex-biased predation. These results provide new insight into the far-reaching effects of plant sex on insect communities, and open up novel opportunities for improving biocontrol of the herbivore in Salix short rotation coppice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.