Climate change has the potential to affect the ecology and evolution of every species on Earth. Although the ecological consequences of climate change are increasingly well documented, the effects of climate on the key evolutionary process driving adaptationnatural selection-are largely unknown. We report that aspects of precipitation and potential evapotranspiration, along with the North Atlantic Oscillation, predicted variation in selection across plant and animal populations throughout many terrestrial biomes, whereas temperature explained little variation. By showing that selection was influenced by climate variation, our results indicate that climate change may cause widespread alterations in selection regimes, potentially shifting evolutionary trajectories at a global scale.C limate affects organisms in ways that ultimately shape patterns of biodiversity (1). Consequently, the rapid changes in Earth's recent climate impose challenges for many organisms, often reducing population fitness (2-4). Although some species may migrate and undergo range shifts to avoid climate-induced declines and potential extinction (5), an alternative outcome is adaptive evolution in response to selection imposed by climate (6). However, we lack a general understanding of whether local and global climatic factors such as temperature, precipitation, and water availability influence selection (2, 7). Understanding these effects is critical for predicting the consequences of increasing droughts, heat waves, and extreme precipitation events that are expected in many regions (8, 9).To quantify how climate variation influences selection, we assembled a large database of standardized directional selection gradients and differentials from spatially [mean = 4.6 ± 5.4 (SD) populations, range = 2 to 59 populations] and temporally [mean = 5.2 ± 6.8 (SD) years, range = 2 to 45 years] replicated selection studies (N = 168) in plant and animal populations (Table 1 and database S1). We focused on directional selection that can generate increases or decreases in trait values because it is well characterized and is likely to drive rapid evolution (10) in response to variation in climatic factors. However, selection acting on trait combinations and trait variance may also be affected by climate (7). Selection gradients estimate the strength and direction of selection acting directly on a trait, whereas differentials estimate "total selection" on a trait via both direct and indirect selection because of trait correlations (11). These standardized selection coefficients describe selection in terms of the relationship between relative fitness and quantitative traits measured in standard deviations, thus facilitating cross-study comparisons (11,12).Geographically, the database contains many estimates of selection from temperate, mid-latitude regions centered at 40°N (Fig. 1A). The populations in this database span many terrestrial biomes on Earth, with the exception of tundra and tropical rainforests where selection has rarely been quantified (Fig. 1B...
Summary 1.Pollinator visitation patterns in relation to variation in floral display size may be modified both quantitatively and qualitatively by local plant density. In this study four measures of pollinator response by Bombus spp. (plant visitation rate, bout length, proportion of flowers visited, flower visitation rate) were investigated under two or three different plant densities in two consecutive years in a natural population of Digitalis purpurea L. 2. Plant visitation rate increased with floral display size in both years, and was higher in dense patches compared with sparse ones in 1999. Bout lengths increased with display size in 1999, and bouts were longer in sparse patches. However, the actual rate of increase with display size was independent of plant density for both response measures. 3. The proportion of flowers visited decreased with floral display size in both years, and in 1999 the decline was faster in high-density patches. As a result, the proportion visited was higher in dense patches for the smallest display sizes, and higher in sparse patches for larger display sizes. 4. Flower visitation rate decreased with floral display size in both years. This is inconsistent with the idea that bees achieve an ideal free distribution across flowers. There was no significant effect of plant density. 5. These results demonstrate that local plant density variation may modify the functional relationship between floral display size and pollinator visitation rate, and potentially influence plant mating patterns.
Floral traits are hypothesized to evolve primarily in response to selection by pollinators. However, selection can also be mediated by other environmental factors. To understand the relative importance of pollinator‐mediated selection and its variation among trait and pollinator types, we analyzed directional selection gradients on floral traits from experiments that manipulated the environment to identify agents of selection. Pollinator‐mediated selection was stronger than selection by other biotic factors (e.g., herbivores), but similar in strength to selection by abiotic factors (e.g., soil water), providing partial support for the hypothesis that floral traits evolve primarily in response to pollinators. Pollinator‐mediated selection was stronger on pollination efficiency traits than on other trait types, as expected if efficiency traits affect fitness via interactions with pollinators, but other trait types also affect fitness via other environmental factors. In addition to varying among trait types, pollinator‐mediated selection varied among pollinator taxa: selection was stronger when bees, long‐tongued flies, or birds were the primary visitors than when the primary visitors were Lepidoptera or multiple animal taxa. Finally, reducing pollinator access to flowers had a relatively small effect on selection on floral traits, suggesting that anthropogenic declines in pollinator populations would initially have modest effects on floral evolution.
Important progress can be made by studies that quantify current selection on nectar in natural populations, as well as experimental approaches that identify the target traits and selective agents involved. Signal-reward associations suggest that correlational selection may shape evolution of nectar traits, and studies exploring these more complex forms of natural selection are needed. Many questions about nectar evolution remain unanswered, making this a field ripe for future research.
Summary• Nonrewarding animal-pollinated plants commonly experience severe pollen limitation, which should result in strong selection on traits affecting the success of pollination. However, the importance of pollinators as selective agents on floral traits in deceptive species has not been quantified experimentally.• Here, we quantified pollinator-mediated selection (Db poll ) on floral morphology and start of flowering in the deceptive orchid Dactylorhiza lapponica by subtracting estimates of selection gradients for plants receiving supplemental handpollination from estimates obtained for open-pollinated control plants.• There was directional selection for taller plants with more flowers and longer spurs, but no statistically significant selection on corolla size or flowering start. Pollinator-mediated selection accounted for all observed selection on spur length (Db poll = 0.32), 76% of the selection on plant height (Db poll = 0.19) and 42% of the selection on number of flowers (Db poll = 0.30). Sixteen per cent of developing fruits were consumed by insect herbivores, but fruit herbivory had only minor effects on the strength of pollinator-mediated selection.• Our results demonstrate that pollinators mediate selection on floral traits likely to affect both pollinator attraction and pollination efficiency, and are consistent with the hypothesis that deceptive species experience strong selection for increased display and mechanical fit between flower and pollinator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.