Background: The contrasting dose of sex chromosomes in males and females potentially introduces a large-scale imbalance in levels of gene expression between sexes, and between sex chromosomes and autosomes. In many organisms, dosage compensation has thus evolved to equalize sex-linked gene expression in males and females. In mammals this is achieved by X chromosome inactivation and in flies and worms by up-or down-regulation of X-linked expression, respectively. While otherwise widespread in systems with heteromorphic sex chromosomes, the case of dosage compensation in birds (males ZZ, females ZW) remains an unsolved enigma.
The performances of 10 different normalization methods on data of endogenous brain peptides produced with label-free nano-LC-MS were evaluated. Data sets originating from three different species (mouse, rat, and Japanese quail), each consisting of 35-45 individual LC-MS analyses, were used in the study. Each sample set contained both technical and biological replicates, and the LC-MS analyses were performed in a randomized block fashion. Peptides in all three data sets were found to display LC-MS analysis order-dependent bias. Global normalization methods will only to some extent correct this type of bias. Only the novel normalization procedure RegrRun (linear regression followed by analysis order normalization) corrected for this type of bias. The RegrRun procedure performed the best of the normalization methods tested and decreased the median S.D. by 43% on average compared with raw data. This method also produced the smallest fraction of peptides with interblock differences while producing the largest fraction of differentially expressed peaks between treatment groups in all three data sets. Linear regression normalization (Regr) performed second best and decreased median S
We have compared the brain proteome in the temporal neocortex between Alzheimer's disease (AD) patients and non-AD individuals by using shotgun mass spectrometry based on a stable isotope dimethyl labeling. A total of 827 unique proteins were identified and quantitated. Of these, 227 proteins were found in at least 9 out of 10 AD/control pairs and were further subjected to statistical analysis. A total of 69 proteins showed different levels (p-value < 0.05) in AD versus control brain samples. Of these proteins, 37 were increased and 32 were decreased as compared to the non-AD subjects. Twenty-three proteins comprise novel proteins that have not previously been reported as related to AD, e.g., neuronal-specific septin-3, septin-2, septin-5, dihydropteridine reductase, and clathrin heavy chain 1. The proteins with altered levels in the AD brain represent a wide variety of pathways suggested to be involved in the disease pathogenesis, including energy metabolism, glycolysis, oxidative stress, apoptosis, signal transduction, and synaptic functioning. Apart from leading to new insights into the molecular mechanisms in AD, the findings provide us with possible novel candidates for future diagnostic and prognostic disease markers.
Rheumatoid arthritis-associated joint pain is frequently observed independent of disease activity, suggesting unidentified pain mechanisms. We demonstrate that antibodies binding to cartilage, specific for collagen type II (CII) or cartilage oligomeric matrix protein (COMP), elicit mechanical hypersensitivity in mice, uncoupled from visual, histological and molecular indications of inflammation. Cartilage antibody-induced pain-like behavior does not depend on complement activation or joint inflammation, but instead on tissue antigen recognition and local immune complex (IC) formation. smFISH and IHC suggest that neuronal Fcgr1 and Fcgr2b mRNA are transported to peripheral ends of primary afferents. CII-ICs directly activate cultured WT but not FcRγ chain-deficient DRG neurons. In line with this observation, CII-IC does not induce mechanical hypersensitivity in FcRγ chain-deficient mice. Furthermore, injection of CII antibodies does not generate pain-like behavior in FcRγ chain-deficient mice or mice lacking activating FcγRs in neurons. In summary, this study defines functional coupling between autoantibodies and pain transmission that may facilitate the development of new disease-relevant pain therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.