Background: The contrasting dose of sex chromosomes in males and females potentially introduces a large-scale imbalance in levels of gene expression between sexes, and between sex chromosomes and autosomes. In many organisms, dosage compensation has thus evolved to equalize sex-linked gene expression in males and females. In mammals this is achieved by X chromosome inactivation and in flies and worms by up-or down-regulation of X-linked expression, respectively. While otherwise widespread in systems with heteromorphic sex chromosomes, the case of dosage compensation in birds (males ZZ, females ZW) remains an unsolved enigma.
The numerous physiological and phenotypic differences between the sexes, as well as the disparity between male and female reproductive interests, result in sexual conflicts, which are often manifested at the genomic level. Sexually antagonistic genes benefit one sex at the expense of the other and experience strong pressure to evolve male- and female-specific expression patterns to resolve sexual conflicts and maximize fitness for both sexes. Sex-biased gene expression has recently been demonstrated for much of the metazoan transcriptome, suggesting that many loci are sexually antagonistic. However, many coding regions function in multiple processes throughout the organism. This pleiotropy increases the complexity of selection for any given gene, which in turn may obscure sex-specific selective pressures and hamper the evolution of sex-biased gene expression. Here we use microarray gene expression data, in conjunction with data on transcript abundance from expressed sequence tag libraries, to demonstrate that loci with sex-biased gene expression are significantly less pleiotropic than unbiased genes. This relationship was independent of sex chromosome gene dosage effects, and the results were concordant across two study organisms, chicken and mouse. These results suggest that the resolution of sexually antagonistic gene expression is determined by the evolutionary constraints acting on any given antagonistic locus.
The powerful pressures of sexual and natural selection associated with species recognition and reproduction are thought to manifest in a faster rate of evolution in sex-biased genes, an effect that has been documented particularly for male-biased genes expressed in the reproductive tract. However, little is known about the rate of evolution for genes involved in sexually dimorphic behaviors, which often form the neurological basis of intrasexual competition and mate choice. We used microarray data, designed to uncover sex-biased expression patterns in embryonic chicken brain, in conjunction with data on the rate of sequence evolution for >4,000 coding regions aligned between chicken and zebra finch in order to study the role of selection in governing the molecular evolution for sex-biased and unbiased genes. Surprisingly, we found that female-biased genes, defined across a range of cutoff values, show a higher rate of functional evolution than both male-biased and unbiased genes. Autosomal male-biased genes evolve at a similar rate as unbiased genes. Sex-specific genomic properties, such as heterogeneity in genomic distribution and GC content, and codon usage bias for sex-biased classes fail to explain this surprising result, suggesting that selective pressures may be acting differently on the male and female brain.
Background: In order to develop a framework for the analysis of sex-biased genes, we present a characterization of microarray data comparing male and female gene expression in 18 day chicken embryos for brain, gonad, and heart tissue.
Regional biases in substitution pattern are likely to be responsible for the large-scale variation in base composition observed in vertebrate genomes. However, the evolutionary forces responsible for these biases are still not clearly defined. In order to study the processes of mutation and fixation across the entire human genome, we analyzed patterns of substitution in Alu repeats since their insertion. We also studied patterns of human polymorphism within the repeats. There is a highly significant effect of recombination rate on the pattern of substitution, whereas no such effect is seen on the pattern of polymorphism. These results suggest that regional biases in substitution are caused by biased gene conversion, a process that increases the probability of fixation of mutations that increase GC content. Furthermore, the strongest correlate of substitution patterns is found to be male recombination rates rather than female or sex-averaged recombination rates. This indicates that in addition to sexual dimorphism in recombination rates, the sexes also differ in the relative rates of crossover and gene conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.