This study was conducted to investigate the effect of dietary oleic acid in olive oil‐supplemented diets on the blood lipid profile and fatty acid composition in blood plasma and adipose tissue of rats. A total of 60 Sprague Dawley rats with mean body weight of 249 g ± 3.04 g were equally divided into three diet groups: control (CON) contained 10% coconut oil, olive50 contained 5% coconut oil and 5% olive oil, and olive100 contained 10% olive oil. Oleic acid (OA) level was highest in olive100 followed by the olive50 and control. The final body weight (BW) of the rats was significantly affected by the intake of OA, in which rats fed olive100 had the lowest final BW, which signified that OA could be associated with weight loss. Olive oil intake significantly increased levels of the high‐density lipoprotein cholesterol (HDL‐C) and exhibited a potential attenuation effect on the glutamic‐oxaloacetic transaminase and the glutamic‐pyruvic transaminase, and a potential role in the reduction of triglycerides in the bloodstream of the animals. In terms of fatty acid composition, significantly high OA was observed in the blood plasma and adipose tissues of rats fed olive100. Omega‐3 polyunsaturated fatty acids (PUFAs), such as linolenic (C18:3 n −3), eicosapentaenoic (C20:5 n −3), and docosahexaenoic (C22:6 n −3), and n −6 PUFA arachidonic (C20:4 n −6) were also significantly increased in the blood plasma of rats fed olive100. These findings suggest that the intake of dietary high OA may enhance the omega‐3 fatty acid levels in the blood plasma of rats and may have a positive effect in reducing risks to cardiovascular disease, as evidenced by weight loss, increased HDL‐C levels, and decreased TG levels in the blood plasma of experimental animals.
Beef contains functional fatty acids such as conjugated linoleic acid and longchain fatty acids. This review summarizes results from studies comparing the fatty acid composition of beef from cattle fed either grass or grain-based feed. Since functional lipid components are contributed through dietary consumption of beef, the fatty acid composition is reported on mg/100 g of meat basis rather than on a percentage of total fat basis. Beef from grass-fed contains lesser total fat than that from grain-fed in all breeds of cattle. Reduced total fat content also influences the fatty acid composition of beef. A 100 g beef meat from grass-fed cattle contained 2,773 mg less total saturated fatty acids (SFA) than that from the same amount of grain-fed. Grass-fed also showed a more favorable SFA lipid profile containing less cholesterol-raising fatty acids (C12:0 to C16:0) but contained a lesser amount of cholesterol-lowering C18:0 than grain-fed beef. In terms of essential fatty acids, grass-fed beef showed greater levels of trans-vaccenic acid and long-chain n-3 polyunsaturated fatty acids (PUFA; EPA, DPA, DHA) than grain-fed beef. Grass-fed beef also contains an increased level of total n-3 PUFA which reduced the n-6 to n-3 ratio thus can offer more health benefits than grain-fed. The findings signify that grass-fed beef could exert protective effects against a number of diseases ranging from cancer to cardiovascular disease (CVD) as evidenced by the increased functional omega-3 PUFA and decreased undesirable SFA. Although grain-fed beef showed lesser EPA, DPA, and DHA, consumers should be aware that greater portions of grain-fed beef could also achieve a similar dietary intake of long-chain omega-3 fatty acids. Noteworthy, grain-fed beef contained higher total monounsaturated fatty acid that have beneficial roles in the amelioration of CVD risks than grass-fed beef. In Hanwoo beef, grain-fed showed higher EPA and DHA than grass-fed beef.
Objective: The objective of this experiment was to investigate the effect of dietary glucose oxidase (GOD), catalase (CAT), or both supplementation on reproductive performance, oxidative stress, and apoptosis in sows.Methods: A total of 104 multiparous sows were randomly assigned to four groups (n = 26) with each group given with basal diet, basal diet plus GOD at 60 U/kg, basal diet plus CAT at 75 U/kg, and basal diet plus GOD at 60 U/kg and CAT at 75 U/kg. Sows were fed the experimental diets throughout gestation and lactation.Results: Dietary GOD supplementation increased average daily feed intake of sows and litter weight at weaning (p<0.05). Dietary CAT supplementation reduced the duration of parturition, stillbirth, and piglet mortality and increased growth performance of weaned piglets (p<0.05).Dietary GOD and CAT supplementation enhanced antioxidant enzyme activities and lessened oxidative stress product levels in plasma of sows and elevated antioxidant capacity of 14-day milk and plasma in weaned piglets (p<0.05). Dietary GOD supplementation increased fecal Lactobacillus counts and reduced Escherichia coli counts of sows (p<0.05). Compared with the basal diet, the GOD diet reduced fecal Escherichia coli counts of sows, but the addition of CAT did not reduce Escherichia coli counts in the GOD diet. Dietary GOD and CAT supplementation reduced the apoptosis rate of the liver, endometrium, and ovarian granulosa A c c e p t e d A r t i c l e 4 cells in sows (p<0.05). In the liver, uterus, and ovary of sows, the mRNA expression of caspase-3 and caspase-9 was downregulated by dietary GOD and CAT supplementation (p<0.05). Conclusion:Dietary GOD and CAT supplementation could improve the antioxidant capacity of sows and weaned piglets, and alleviate hepatic, ovarian and uterine apoptosis by weakening apoptosis-related gene expression. Glucose oxidase regulated fecal microflora of sows, but supplementation of CAT to GOD could weaken the inhibitory effect of GOD on fecal Escherichia coli.
Funding sourcesState funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.