Genetic selection for residual feed intake (RFI) is an indirect approach for reducing enteric methane (CH4) emissions in beef and dairy cattle. RFI is moderately heritable (0.26 to 0.43), moderately repeatable across diets (0.33 to 0.67) and independent of body size and production, and when adjusted for off-test ultrasound backfat thickness (RFIfat) is also independent of body fatness in growing animals. It is highly dependent on accurate measurement of individual animal feed intake. Within-animal repeatability of feed intake is moderate (0.29 to 0.49) with distinctive diurnal patterns associated with cattle type, diet and genotype, necessitating the recording of feed intake for at least 35 days. In addition, direct measurement of enteric CH4 production will likely be more variable and expensive than measuring feed intake and if conducted should be expressed as CH4 production (g/animal per day) adjusted for body size, growth, body composition and dry matter intake (DMI) or as residual CH4 production. A further disadvantage of a direct CH4 phenotype is that the relationships of enteric CH4 production on other economically important traits are largely unknown. Selection for low RFIfat (efficient, −RFIfat) will result in cattle that consume less dry matter (DMI) and have an improved feed conversion ratio (FCR) compared with high RFIfat cattle (inefficient; +RFIfat). Few antagonistic effects have been reported for the relationships of RFIfat on carcass and meat quality, fertility, cow lifetime productivity and adaptability to stress or extensive grazing conditions. Low RFIfat cattle also produce 15% to 25% less enteric CH4 than +RFIfat cattle, since DMI is positively related to enteric methane (CH4) production. In addition, lower DMI and feeding duration and frequency, and a different rumen bacterial profile that improves rumen fermentation in −RFIfat cattle may favor a 1% to 2% improvement in dry matter and CP digestibility compared with +RFIfat cattle. Rate of genetic change using this approach is expected to improve feed efficiency and reduce enteric CH4 emissions from cattle by 0.75% to 1.0% per year at equal levels of body size, growth and body fatness compared with cattle not selected for RFIfat.
The objective of this study was to investigate the effects of adding engineered biocarbon to a high-forage diet on ruminal fermentation, nutrient digestion, and enteric methane (CH4) production in a semi-continuous culture artificial rumen system (RUSITEC). The experiment was a completely randomized block design with four treatments assigned to sixteen fermentation vessels (four/treatment) in two RUSITEC apparatuses. The basal diet consisted of 60% barley silage, 27% barley grain, 10% canola meal, and 3% supplement (DM basis) with biocarbon added at 0, 0.5, 1, and 2% of substrate DM. The study period was 17 d, with a 10-d adaptation and 7-d sample collection period. Increasing biocarbon linearly increased (P < 0.05) disappearance of DM, OM, CP, ADF and NDF. Compared to control, increasing biocarbon enhanced (P < 0.01) production of total VFA, acetate, propionate, branch-chained VFAs, and tended to increase (P = 0.06) NH3-N. Microbial protein synthesis linearly increased (P = 0.01) with increasing biocarbon. Addition of biocarbon reduced overall CH4 production compared with the control (P ≤ 0.05). There were no differences (P > 0.05) in production of total gas, large or small peptides, or in the number of protozoa as a result of addition of biocarbon to the diet. Addition of biocarbon to a forage diet increased DM digestibility by up to 2%, while lowering enteric CH4 production and enhancing microbial protein synthesis in in vitro semi- continuous culture fermenters.
The objective of this research was to characterize the production responses of lactating dairy cows during and after short-term, moderate heat exposure, and to determine whether evening (p.m.) feeding would alleviate the associated production losses. In a two-period, cross-over design, eight mature lactating cows were fed a total mixed ration at either 0830 or 2030 h. Each 15-d period consisted of a 5-d thermoneutral phase, a 5-d heat stress phase and a 5-d thermoneutral recovery phase. Mean daily vaginal temperature and respiration rate increased by 0.6 +/- 0.04 degrees C and 27 +/- 1.3 breaths/min, respectively, during short-term heat exposure. Daily dry matter intake, milk yield and solids-not-fat were depressed by 1.4 +/- 0.13 kg, 1.7 +/- 0.32 kg and 0.07 +/- 0.023%, respectively, during heat exposure. During the recovery phase, dry matter intake remained depressed, milk protein declined by 0.05 +/- 0.020%, and daily milk yield exhibited a further decline of 1.2 +/- 0.32 kg. Time of feeding had no effect on vaginal temperature, respiration rate, dry matter intake, water intake, milk yield, fat-corrected milk, protein percent, solids-non-fat percent or somatic cell count during heat exposure or during the recovery period that followed. Fat percent was, however, significantly lower in p.m.-fed animals. These data indicate that short-term, moderate heat stress, which occurs during the spring and summer months in Canada and the Northern United States, will significantly decrease production in the lactating cow. Shifting from morning to evening feeding did not alleviate production losses associated with this type of heat stress.
. 2004. Effect of low and high forage diet on enteric and manure pack greenhouse gas emissions from a feedlot. Can. J. Anim. Sci. 84: [445][446][447][448][449][450][451][452][453]. The objectives of this study were to assess enteric methane (CH 4 ) production by beef steers fed one of two isocaloric diets with different forage:grain ratios and to quantify greenhouse gas (GHG) emissions from bedded manure packs in the eight feedlot pens holding these steers (14 head pen -1 ). Five animals (252 ± 20 kg) in each pen were randomly selected for measurement of CH 4 emissions over the course of the 126-d feeding trial. Two 24-h gas collections were completed for each steer in each of three collection periods using the sulfur hexafluoride tracer gas technique. The fluxes of nitrous oxide (N 2 O), methane (CH 4 ) and carbon dioxide (CO 2 ) from bedding packs were measured using vented static chambers in each sampling period. Methane production (L d -1 ) was 42% higher (P < 0.05) from steers fed the low forage:grain ratio than from steers fed the high forage:grain ratio. Overall, methane production (% of gross energy intake) ranged from 0.9 to 6.9% on the low forage:grain diet and from 0.7 to 4.9% on the high forage:grain diet. Daily CH 4 emissions were similar in the first two periods and increased during the third sampling period. There was no effect of diet on manure pack temperature during sampling, however, the manure pack was deeper (P < 0.05) in pens holding animals fed the high forage:grain diet. Furthermore, diet had no effect on the manure pack fluxes. Total daily non-CO 2 emissions from enteric and manure pack sources (CO 2 equivalent) were different (P < 0.05) between dietary treatments and averaged 1931 ± 81 g head -1 d -1 for the low forage:grain and 1394 ± 81 g head -1 d -1 for the high forage:grain diet. . L'étude devait servir à évaluer la production entérique de méthane (CH 4 ) par des bouvillons de boucherie recevant deux rations isocaloriques à rapport fourrage:grain différent ainsi qu'à déterminer le volume de gaz à effet de serre (GES) libérés par la litière accumulée dans les huit enclos où les animaux étaient gardés (14 sujets par enclos). Cinq animaux (252 ± 20 kg) ont été choisis au hasard dans chaque enclos et on a mesuré leurs émissions de CH 4 au cours des 126 jours de l'expérience. Pour chaque bouvillon, on a recueilli les gaz pendant 24 heures à deux reprises dans chacune de trois périodes en utilisant de l'hexafluorure de soufre comme traceur. Les flux d'oxyde nitreux (N 2 O), de méthane (CH 4 ) et de dioxyde de carbone (CO 2 ) issus de la litière accumulée ont été mesurés au moyen de cellules aérées de manière statique durant chaque période d'échantillonnage. Les animaux nourris avec la ration à faible rapport fourrage:grain produisent 42 % plus (P < 0,05) de méthane (litres par jour) que ceux nourris avec l'autre ration. Dans l'ensemble, la production de méthane (pourcentage de la quantité d'énergie brute ingérée) varie de 0,9 à 6,9 % pour la ration à faible rapport fourrage:grain et de 0...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.