Immunologic measurements of the serum concentration of prostate-specific antigen (PSA), an abundant prostatic-secreted serine proteinase, are frequently used to monitor patients with prostate cancer, though it has not been ascertained whether this immunoreactivity represents a PSA zymogen, the active proteinase, or PSA complexed to extracellular proteinase inhibitors. To characterize the PSA immunoreactivity in serum, we used monoclonal antibodies produced against PSA and a polyclonal rabbit IgG against alpha 1-antichymotrypsin in the design of three noncompetitive PSA assays: assay T, which detected PSA both when present as the active proteinase and when complexed to alpha 1-antichymotrypsin; assay F, which recognized the active proteinase but most poorly detected PSA complexed to alpha 1-antichymotrypsin; and assay C, which was specific for PSA complexed to alpha 1-antichymotrypsin. We used the three assays to measure PSA immunoreactivity in 64 patients' sera and in the effluent after gel chromatography of sera from four patients. This identified an 80- to 90-kDa complex between PSA and alpha 1-antichymotrypsin as the predominant fraction of the PSA immunoreactivity in blood plasma; an immunoreactive 25- to 40-kDa compound was the minor fraction.
Background: Prostate-specific antigen (PSA) is widely used to detect prostate cancer. The low positive predictive value of elevated PSA results in large numbers of unnecessary prostate biopsies. We set out to determine whether a multivariable model including four kallikrein forms (total, free, and intact PSA, and human kallikrein 2 (hK2)) could predict prostate biopsy outcome in previously unscreened men with elevated total PSA.
We studied the ability of various markers of bone turnover to predict fracture in 1040 randomly recruited 75-year-old women. A total of 178 of the women sustained at least one fracture during follow-up (mean, 4.6 years). In elderly women, TRACP5b and urinary fragments of osteocalcin are promising new markers for prediction of fracture, in particular, vertebral fracture.Introduction: Biochemical markers reflecting bone turnover may improve the prediction of fractures. Materials and Methods: The ability of 10 markers of bone turnover to predict fracture in 1040 elderly women in the Malmö OPRA study was studied. Serum bone-specific alkaline phosphatase and four different forms of serum osteocalcin (S-OC) were analyzed as markers of bone formation and serum C-terminal cross-linking telopeptides of type I collagen (S-CTX), serum TRACP isoform 5b (S-TRACP5b) and urinary free deoxypyridinoline (U-DPD) as markers of bone resorption. Two novel assays for osteocalcin fragments in urine (U-OC) were analyzed. Areal BMD (aBMD) was measured by DXA in the femoral neck and lumbar spine. Results: In total, 231 fractures were sustained by 178 of the women during a 3-to 6.5-year (mean, 4.6 years) follow-up period. When women with prospective fractures were compared with women without fractures, S-TRACP5b, S-CTX, one S-OC, and one U-OC were higher in women with a fracture of any type (all p Ͻ 0.05), and all bone markers were higher in women with clinical vertebral fracture (all p Ͻ 0.05). Markers were not significantly elevated in women with hip fracture. When women within the highest quartile of a bone marker were compared with all others, S-TRACP5b and one U-OC predicted the occurrence of a fracture of any type (odds ratio [OR]), 1.55 and 1.53; p Ͻ 0.05). S-TRACP5b, the two U-OCs, and S-CTX predicted vertebral fracture (OR, 2.28, 2.75, 2.71, and 1.94, respectively; all p Ͻ 0.05), and the predictive value remained significant for S-TRACP5b and the two U-OCs after adjusting for aBMD (OR, 2.02-2.25; p Ͻ 0.05). Bone markers were not able to predict hip fracture. Conclusion: These results show that biochemical markers of bone turnover can predict fracture, and in particular, fractures that engage trabecular bone. S-TRACP5b and U-OC are promising new markers for prediction of fracture.
PurposeWe previously reported that a panel of four kallikrein forms in blood—total, free, and intact prostate-specific antigen (PSA) and kallikrein-related peptidase 2 (hK2)—can reduce unnecessary biopsy in previously unscreened men with elevated total PSA. We aimed to replicate our findings in a large, independent, representative, population-based cohort.Patients and MethodsThe study cohort included 2,914 previously unscreened men undergoing biopsy as a result of elevated PSA (≥ 3 ng/mL) in the European Randomized Study of Screening for Prostate Cancer, Rotterdam, with 807 prostate cancers (28%) detected. The cohort was randomly divided 1:3 into a training and validation set. Levels of kallikrein markers were compared with biopsy outcome.ResultsAddition of free PSA, intact PSA, and hK2 to a model containing total PSA and age improved the area under the curve from 0.64 to 0.76 and 0.70 to 0.78 for models without and with digital rectal examination results, respectively (P < .001 for both). Application of the panel to 1,000 men with elevated PSA would reduce the number of biopsies by 513 and miss 54 of 177 low-grade cancers and 12 of 100 high-grade cancers. Findings were robust to sensitivity analysis.ConclusionWe have replicated our previously published finding that a panel of four kallikreins can predict the result of biopsy for prostate cancer in men with elevated PSA. Use of this panel would dramatically reduce biopsy rates. A small number of men with cancer would be advised against immediate biopsy, but these men would have predominately low-stage, low-grade disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.