Increasing calcium intake by consuming cheese appears to be more beneficial for cortical bone mass accrual than the consumption of tablets containing a similar amount of calcium. Diverse patterns of growth velocity may mask the efficacy of supplementation in a short-term trial of children transiting through puberty.
We studied the ability of various markers of bone turnover to predict fracture in 1040 randomly recruited 75-year-old women. A total of 178 of the women sustained at least one fracture during follow-up (mean, 4.6 years). In elderly women, TRACP5b and urinary fragments of osteocalcin are promising new markers for prediction of fracture, in particular, vertebral fracture.Introduction: Biochemical markers reflecting bone turnover may improve the prediction of fractures. Materials and Methods: The ability of 10 markers of bone turnover to predict fracture in 1040 elderly women in the Malmö OPRA study was studied. Serum bone-specific alkaline phosphatase and four different forms of serum osteocalcin (S-OC) were analyzed as markers of bone formation and serum C-terminal cross-linking telopeptides of type I collagen (S-CTX), serum TRACP isoform 5b (S-TRACP5b) and urinary free deoxypyridinoline (U-DPD) as markers of bone resorption. Two novel assays for osteocalcin fragments in urine (U-OC) were analyzed. Areal BMD (aBMD) was measured by DXA in the femoral neck and lumbar spine. Results: In total, 231 fractures were sustained by 178 of the women during a 3-to 6.5-year (mean, 4.6 years) follow-up period. When women with prospective fractures were compared with women without fractures, S-TRACP5b, S-CTX, one S-OC, and one U-OC were higher in women with a fracture of any type (all p Ͻ 0.05), and all bone markers were higher in women with clinical vertebral fracture (all p Ͻ 0.05). Markers were not significantly elevated in women with hip fracture. When women within the highest quartile of a bone marker were compared with all others, S-TRACP5b and one U-OC predicted the occurrence of a fracture of any type (odds ratio [OR]), 1.55 and 1.53; p Ͻ 0.05). S-TRACP5b, the two U-OCs, and S-CTX predicted vertebral fracture (OR, 2.28, 2.75, 2.71, and 1.94, respectively; all p Ͻ 0.05), and the predictive value remained significant for S-TRACP5b and the two U-OCs after adjusting for aBMD (OR, 2.02-2.25; p Ͻ 0.05). Bone markers were not able to predict hip fracture. Conclusion: These results show that biochemical markers of bone turnover can predict fracture, and in particular, fractures that engage trabecular bone. S-TRACP5b and U-OC are promising new markers for prediction of fracture.
Osteocalcin detected from serum samples is considered a specific marker of osteoblast activity and bone formation rate. However, osteocalcin embedded in bone matrix must also be released during bone resorption. To understand the contribution of each type of bone cell in circulating osteocalcin levels, we used immunoassays detecting different molecular forms of osteocalcin to monitor bone resorption in vitro. Osteoclasts were obtained from rat long bones and cultured on bovine bone slices using osteocalcin-depleted fetal bovine serum. In addition, human osteoclasts differentiated from peripheral blood mononuclear cells were used. Both rat and human osteoclasts released osteocalcin from bovine bone into medium. The amount of osteocalcin increased in the presence of parathyroid hormone, a stimulator of resorption, and decreased in the presence of bafilomycin A1, an inhibitor of resorption. The amount of osteocalcin in the medium correlated with a well characterized marker of bone resorption, the C-terminal telopeptide of type I collagen (r > 0.9, p < 0.0001). The heterogeneity of released osteocalcin was determined using reverse phase high performance liquid chromatography, and several molecular forms of osteocalcin, including intact molecule, were identified in the culture medium. In conclusion, osteocalcin is released from the bone matrix during bone resorption as intact molecules and fragments. In addition to the conventional use as a marker of bone formation, osteocalcin can be used as a marker of bone resorption in vitro. Furthermore, bone matrix-derived osteocalcin may contribute to circulating osteocalcin levels, suggesting that serum osteocalcin should be considered as a marker of bone turnover rather than bone formation. Osteocalcin (OC)1 is a 6-kDa noncollagenous protein produced by osteoblasts (1), osteocytes (2), and odontoblasts (3).Osteocalcin messenger RNA has also been detected in tissues other than bone, but it appears to be processed properly only in the bone microenvironment (4, 5). The structure of osteocalcin is characterized by three glutamic acid residues, which undergo a vitamin K-dependent carboxylation. The ␥-carboxyglutamic acid residues (Gla) provide osteocalcin with the ability to bind bone hydroxyapatite with a high affinity (6, 7). Osteocalcin is the second most abundant protein in the bone matrix, and it is highly conserved among all vertebrate species (8). The biological function of osteocalcin is probably related to the regulation of bone turnover and/or mineralization (9, 10).The expression of osteocalcin is a marker of late osteoblast differentiation and is induced only after the expression of other osteoblastic markers such as alkaline phosphatase and type I collagen (11,12). Newly synthesized osteocalcin is mostly (60 -90%) adsorbed to the bone hydroxyapatite via the Gla residues, but a part of it leaks into the circulation where it can be detected (13,14). Although osteoblasts synthesize only intact osteocalcin (15), osteocalcin may further undergo intracellular processing or ...
Osteoporosis is characterized by compromised bone mass and strength, predisposing to an increased risk of fracture. Increased bone metabolism has been suggested to be a risk factor for fracture. The aim of this study was to evaluate whether baseline bone turnover markers are associated with long-term incidence of fracture in a population-based sample of 1040 women who were 75 years old (Malmö OPRA study). Seven bone markers (S-TRACP5b, S-CTX-I, S-OC[1-49], S-TotalOC, S-cOC, S-boneALP, and urinary osteocalcin) were measured at baseline and 1-year follow-up visit. During the mean follow-up of 9.0 years (range 7.4-10.9), 363 women sustained at least one fracture of any type, including 116 hip fractures and 103 clinical vertebral fractures. High S-TRACP5b and S-CTX-I levels were associated with increased risk of any fracture with hazard ratios [HRs (95% confidence interval)] of 1.16 (1.04-1.29) and 1.13 (1.01-1.27) per SD increase, respectively. They also were associated with increased risk of clinical vertebral fracture with HRs of 1.22 (1.01-1.48) and 1.32 (1.05-1.67), respectively. Markers were not associated with risk for hip fracture. Results were similar when we used resorption markers, including urinary osteocalcin, measured at the 1-year visit or an average of the two measurements. The HRs were highest for any fracture in the beginning of the follow-up period, 2.5 years from baseline. For vertebral fractures, the association was more pronounced and lasted for a longer period of time, at least for 5 years. In conclusion, elevated levels of S-TRACP5b, S-CTX-I, and urinary osteocalcin are associated with increased fracture risk for up to a decade in elderly women. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.