Vitamin D supplements have been used to prevent fractures. The effect may be mediated through increased bone mass, but also through reduced falling propensity. The aim of this study was to evaluate the association between 25-hydroxy vitamin D levels (25OHD), fall-associated variables (including tests of functional performance), and fracture in ambulatory women. At baseline 25OHD was measured in 986 women. Fall-associated variables were investigated at baseline. Fractures were recorded during a 3-year follow-up. Four percent of the women had 25OHD levels below 20 ng/ml (50 nmol/l), and 26% had 25OHD levels below 30 ng/ml (75 nmol/l). 25OHD correlated with gait speed (r =0.17, P <0.001), the Romberg balance test (r =0.14, P <0.001), self-estimated activity level (r =0.15, P <0.001), and thigh muscle strength (r =0.08, P =0.02). During the 3-year follow-up, 119 out of the 986 women sustained at least one fracture. The Cox proportional hazard ratio (HR) (95% confidence interval) for sustaining a fracture during the follow-up was 2.04 (1.04-4.04) for the group of women with 25OHD below 20 ng/ml, in which 9 out of 43 women sustained a fracture. Thirty-two of the 256 women with 25OHD levels below 30 ng/ml sustained a fracture during the follow-up, with a non-significant HR of 1.07 (1.07-1.61). This cohort of elderly, ambulatory women had a high mean 25OHD. A low 25OHD was associated with inferior physical activity level, gait speed and balance. A 25OHD level below 30 ng/ml was not associated with an increased risk of fractures in this study. However, a subgroup of women with 25OHD levels below 20 ng/ml had a tendency to an increased risk of fractures, which may be associated with an inferior physical activity and postural stability.
We studied the ability of various markers of bone turnover to predict fracture in 1040 randomly recruited 75-year-old women. A total of 178 of the women sustained at least one fracture during follow-up (mean, 4.6 years). In elderly women, TRACP5b and urinary fragments of osteocalcin are promising new markers for prediction of fracture, in particular, vertebral fracture.Introduction: Biochemical markers reflecting bone turnover may improve the prediction of fractures. Materials and Methods: The ability of 10 markers of bone turnover to predict fracture in 1040 elderly women in the Malmö OPRA study was studied. Serum bone-specific alkaline phosphatase and four different forms of serum osteocalcin (S-OC) were analyzed as markers of bone formation and serum C-terminal cross-linking telopeptides of type I collagen (S-CTX), serum TRACP isoform 5b (S-TRACP5b) and urinary free deoxypyridinoline (U-DPD) as markers of bone resorption. Two novel assays for osteocalcin fragments in urine (U-OC) were analyzed. Areal BMD (aBMD) was measured by DXA in the femoral neck and lumbar spine. Results: In total, 231 fractures were sustained by 178 of the women during a 3-to 6.5-year (mean, 4.6 years) follow-up period. When women with prospective fractures were compared with women without fractures, S-TRACP5b, S-CTX, one S-OC, and one U-OC were higher in women with a fracture of any type (all p Ͻ 0.05), and all bone markers were higher in women with clinical vertebral fracture (all p Ͻ 0.05). Markers were not significantly elevated in women with hip fracture. When women within the highest quartile of a bone marker were compared with all others, S-TRACP5b and one U-OC predicted the occurrence of a fracture of any type (odds ratio [OR]), 1.55 and 1.53; p Ͻ 0.05). S-TRACP5b, the two U-OCs, and S-CTX predicted vertebral fracture (OR, 2.28, 2.75, 2.71, and 1.94, respectively; all p Ͻ 0.05), and the predictive value remained significant for S-TRACP5b and the two U-OCs after adjusting for aBMD (OR, 2.02-2.25; p Ͻ 0.05). Bone markers were not able to predict hip fracture. Conclusion: These results show that biochemical markers of bone turnover can predict fracture, and in particular, fractures that engage trabecular bone. S-TRACP5b and U-OC are promising new markers for prediction of fracture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.