Tartrate-resistant acid phosphatase (TRAP) is highly expressed in bone-resorbing osteoclasts and activated macrophages. It has been suggested that a redox-active iron in the binuclear iron center of TRAP could have the capacity to react with hydrogen peroxide to produce highly destructive reactive oxygen species (ROS). Here we show that TRAP can generate ROS in vitro and that cells over-expressing TRAP produce higher amounts of intracellular ROS than their parent cells. We further demonstrate that these ROS can be targeted to destroy collagen and other proteins. In resorbing osteoclasts, TRAP was found in transcytotic vesicles transporting matrix degradation products through the cell, suggesting that TRAP-facilitated fragmentation of endocytosed material takes place in a specific cellular compartment. These results suggest that bone matrix degradation occurs not only extracellularly in the resorption lacunae but also intracellularly in the transcytotic vesicles. We propose that proteins containing redox-active iron could represent a novel mechanism of physiological fragmentation of organic molecules. This mechanism could be important in tissue remodeling and as a defense mechanism of phagocytosing cells.
Mesenchymal stem cells (MSCs) are multipotent cells that arise from the mesenchyme during development. They reside in the bone marrow close to hematopoietic stem cell niches allowing them to maintain bone marrow homeostasis and to regulate the maturation of both hematopoietic and non-hematopoietic cells. MSCs possess an extensive potential to proliferate and differentiate e.g. into osteoblasts, osteocytes, adipocytes and chondrocytes. Nevertheless, there still are some open questions about the complex process of MSC differentiation involving different transcription factors and signaling pathways, which will be discussed in this review. We also shortly introduce the characteristics and function of bone-forming osteoblasts and their role in angiogenesis. MSCs are of interest in clinical applications, since they can be easily isolated from bone marrow aspirates and expanded in vitro. When the source of osteoprogenitors is compromised, cell-based therapies could provide a novel way to repair bone defects. Indeed, there is an increasing interest in the use of MSCs and more differentiated cells in clinical applications for bone repair, which will be introduced in this review. A major section of the review is dedicated to the functions of osteocytes in the regulation of bone remodeling. Finally, we present an original hypothesis about the possible role of osteocytes in future bone tissue engineering.
Using human peripheral blood CD14+ osteoclast precursors, we show that testosterone directly inhibits osteoclast formation and bone resorption at physiological concentrations. Instead, estrogen has no direct effects, whereas its action seems to be mediated through osteoblasts by producing osteoprotegerin. Both estrogen and testosterone acts through their cognate receptors.Introduction: Estrogen (E2) deficiency is associated with both the development of postmenopausal and senile form of osteoporosis in elderly women. Testosterone (Te) deficiency, on the other hand, may cause osteoporosis in men. In both sexes, osteoporosis is associated with disturbed bone turnover, including increased bone resorption caused by enhanced osteoclast formation and increased osteoclast activity. However, the mechanisms by which E2 or Te act on bone are not fully understood, and one of the central questions is whether these hormones act directly on osteoclast precursors or whether their action is mediated through osteoblastic cells. Materials and Methods:We cultured human peripheral blood CD14 + osteoclast precursors in the presence of RANKL, macrophage-colony stimulating factor (M-CSF), TNF-␣, and dexamethasone to induce them to differentiate into osteoclasts. To study the possible osteoblast-mediated effects, osteoclast precursors were also co-cultured either with human MG-63 or SaOS-2 osteoblast-derived osteosarcoma cells. These cultures were treated with 10
Osteocalcin detected from serum samples is considered a specific marker of osteoblast activity and bone formation rate. However, osteocalcin embedded in bone matrix must also be released during bone resorption. To understand the contribution of each type of bone cell in circulating osteocalcin levels, we used immunoassays detecting different molecular forms of osteocalcin to monitor bone resorption in vitro. Osteoclasts were obtained from rat long bones and cultured on bovine bone slices using osteocalcin-depleted fetal bovine serum. In addition, human osteoclasts differentiated from peripheral blood mononuclear cells were used. Both rat and human osteoclasts released osteocalcin from bovine bone into medium. The amount of osteocalcin increased in the presence of parathyroid hormone, a stimulator of resorption, and decreased in the presence of bafilomycin A1, an inhibitor of resorption. The amount of osteocalcin in the medium correlated with a well characterized marker of bone resorption, the C-terminal telopeptide of type I collagen (r > 0.9, p < 0.0001). The heterogeneity of released osteocalcin was determined using reverse phase high performance liquid chromatography, and several molecular forms of osteocalcin, including intact molecule, were identified in the culture medium. In conclusion, osteocalcin is released from the bone matrix during bone resorption as intact molecules and fragments. In addition to the conventional use as a marker of bone formation, osteocalcin can be used as a marker of bone resorption in vitro. Furthermore, bone matrix-derived osteocalcin may contribute to circulating osteocalcin levels, suggesting that serum osteocalcin should be considered as a marker of bone turnover rather than bone formation. Osteocalcin (OC)1 is a 6-kDa noncollagenous protein produced by osteoblasts (1), osteocytes (2), and odontoblasts (3).Osteocalcin messenger RNA has also been detected in tissues other than bone, but it appears to be processed properly only in the bone microenvironment (4, 5). The structure of osteocalcin is characterized by three glutamic acid residues, which undergo a vitamin K-dependent carboxylation. The ␥-carboxyglutamic acid residues (Gla) provide osteocalcin with the ability to bind bone hydroxyapatite with a high affinity (6, 7). Osteocalcin is the second most abundant protein in the bone matrix, and it is highly conserved among all vertebrate species (8). The biological function of osteocalcin is probably related to the regulation of bone turnover and/or mineralization (9, 10).The expression of osteocalcin is a marker of late osteoblast differentiation and is induced only after the expression of other osteoblastic markers such as alkaline phosphatase and type I collagen (11,12). Newly synthesized osteocalcin is mostly (60 -90%) adsorbed to the bone hydroxyapatite via the Gla residues, but a part of it leaks into the circulation where it can be detected (13,14). Although osteoblasts synthesize only intact osteocalcin (15), osteocalcin may further undergo intracellular processing or ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.