A brief review is presented for the use of soil lysimeters in studying transpiration, evapotranspiration, moisture, and nutrient movement in earlier times and pesticide dissipation and movement, and mass-balance of pesticide dissipation in more recent times. The important factors needed to understand research findings and to model pesticide dissipation such as key soil and site characteristics, climatic conditions, and the methods involved are discussed. Several case studies carried out by Ciba and North Carolina State University are discussed and current developments in soil column field lysimeters are presented.
The primary purpose of the study described in this report was to determine if the fungicide chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile), three of its transformation products, or selected other pesticides are transported to surface water after use on peanuts or other crops in Texas and Oklahoma. The results summarized here are part of a larger study that includes data from sites in Alabama, Florida, and Georgia. Chlorothalonil is classified as a probable carcinogen, and the 4-hydroxy of chlorothalonil transformation product is more soluble, more stable, and, for some species, more toxic than its parent compound. In 2003, water samples were collected from three surface-water sites in Texas and two surface-water sites in Oklahoma; in 2004, samples were collected from the two Oklahoma sites. Chlorothalonil was not detected in any of the 20 samples analyzed. The 4-hydroxy of chlorothalonil transformation product was detected in three samples collected in 2004, with a maximum concentration of 0.018 microgram per liter (µg/L); the other two transformation products (diamide chlorothalonil and 1-amide-4-hydroxy chlorothalonil) were not detected in any sample. In addition, 19 samples were analyzed for as many as 109 other pesticides and transformation products. Atrazine was detected in 13 samples and had a maximum concentration of 0.122 µg/L. Deethylatrazine was detected in 10 samples and had a maximum concentration of 0.04 µg/L. Metolachlor was detected in eight samples and had a maximum concentration of 0.019 µg/L. Fifteen other pesticides or pesticide transformation products also were detected. In general, concentrations of pesticides were less than concentrations that are commonly observed in Midwestern streams. The results indicate that the use of chlorothalonil on peanut crops has not resulted in substantial contamination of the studied streams in Texas and Oklahoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.